咨询与建议

限定检索结果

文献类型

  • 25 篇 期刊文献
  • 10 篇 会议

馆藏范围

  • 35 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 35 篇 工学
    • 27 篇 计算机科学与技术...
    • 15 篇 电气工程
    • 3 篇 信息与通信工程
    • 2 篇 机械工程
    • 2 篇 软件工程
    • 1 篇 动力工程及工程热...
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
  • 5 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 2 篇 理学
    • 1 篇 物理学
    • 1 篇 生物学

主题

  • 35 篇 few-shot class-i...
  • 7 篇 class-incrementa...
  • 7 篇 power capacitors
  • 7 篇 training
  • 5 篇 incremental lear...
  • 5 篇 image classifica...
  • 4 篇 task analysis
  • 3 篇 transformer
  • 3 篇 deep learning
  • 3 篇 continual learni...
  • 3 篇 lifelong learnin...
  • 3 篇 self-supervised ...
  • 3 篇 few-shot learnin...
  • 3 篇 image recognitio...
  • 3 篇 adaptation model...
  • 2 篇 catastrophic for...
  • 2 篇 metalearning
  • 2 篇 feature extracti...
  • 2 篇 prompt learning
  • 2 篇 meta-learning

机构

  • 2 篇 wuhan univ sch c...
  • 2 篇 huazhong univ sc...
  • 2 篇 old dominion uni...
  • 2 篇 chinese acad sci...
  • 2 篇 halmstad univ sc...
  • 1 篇 zhejiang chuchi ...
  • 1 篇 nanjing univ pos...
  • 1 篇 dept new network...
  • 1 篇 zhejiang univ de...
  • 1 篇 univ oulu ctr ma...
  • 1 篇 zhejiang lab res...
  • 1 篇 jd retail platfo...
  • 1 篇 hebei univ engn ...
  • 1 篇 xi an jiao tong ...
  • 1 篇 shanghai jiao to...
  • 1 篇 polish acad sci ...
  • 1 篇 tianjin univ sch...
  • 1 篇 elect countermea...
  • 1 篇 chinese univ hon...
  • 1 篇 hanyang univ dep...

作者

  • 3 篇 wang ye
  • 3 篇 tiwari prayag
  • 2 篇 zhao guoshuai
  • 2 篇 qiu wenhao
  • 2 篇 ning xin
  • 2 篇 peng qinmu
  • 2 篇 qian xueming
  • 2 篇 wu fei
  • 2 篇 jing xiao-yuan
  • 2 篇 tian songsong
  • 2 篇 li lusi
  • 2 篇 fu sichao
  • 1 篇 li xi
  • 1 篇 li yanan
  • 1 篇 chen hang
  • 1 篇 liu changming
  • 1 篇 ma lizhuang
  • 1 篇 ma tian-fang
  • 1 篇 cao zehong
  • 1 篇 yu yunlong

语言

  • 34 篇 英文
检索条件"主题词=Few-Shot Class-Incremental Learning"
35 条 记 录,以下是1-10 订阅
排序:
few-shot class-incremental learning for classification and Object Detection: A Survey
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2025年 第4期47卷 2924-2945页
作者: Zhang, Jinghua Liu, Li Silven, Olli Pietikainen, Matti Hu, Dewen Natl Univ Def Technol NUDT Coll Intelligence Sci & Technol Changsha 410073 Peoples R China Univ Oulu Ctr Machine Vis & Signal Anal CMVS Oulu 90570 Finland Natl Univ Def Technol NUDT Coll Elect Sci & Technol Changsha 410073 Peoples R China Univ Oulu CMVS Oulu 90570 Finland
few-shot class-incremental learning (FSCIL) presents a unique challenge in Machine learning (ML), as it necessitates the incremental learning (IL) of new classes from sparsely labeled training samples without forgetti... 详细信息
来源: 评论
few-shot class-incremental learning for Medical Time Series classification
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2024年 第4期28卷 1872-1882页
作者: Sun, Le Zhang, Mingyang Wang, Benyou Tiwari, Prayag Nanjing Univ Informat Sci & Technol Engn Res Ctr Digital Forens Minist Educ Nanjing 210044 Peoples R China Nanjing Univ Informat Sci & Technol Dept Jiangsu Collaborat Innovat Ctr Atmospher Envi Nanjing 210044 Peoples R China Chinese Univ Hong Kong SRIBD & SDS Shenzhen 518172 Peoples R China Halmstad Univ Sch Informat Technol Halmstad Sweden
Continuously analyzing medical time series as new classes emerge is meaningful for health monitoring and medical decision-making. few-shot class-incremental learning (FSCIL) explores the classification of few-shot new... 详细信息
来源: 评论
few-shot class-incremental learning for Network Intrusion Detection Systems
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY
收藏 引用
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY 2024年 5卷 6736-6757页
作者: Di Monda, Davide Montieri, Antonio Persico, Valerio Voria, Pasquale De Ieso, Matteo Pescape, Antonio Univ Napoli Federico II Dipartimento Ingn Elettr & Tecnol Informaz I-80125 Naples Italy IMT Sch Adv Studies I-55100 Lucca Italy
In today's digital landscape, critical services are increasingly dependent on network connectivity, thus cybersecurity has become paramount. Indeed, the constant escalation of cyberattacks, including zero-day expl... 详细信息
来源: 评论
few-shot class-incremental learning by Sampling Multi-Phase Tasks
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023年 第11期45卷 12816-12831页
作者: Zhou, Da-Wei Ye, Han-Jia Ma, Liang Xie, Di Pu, Shiliang Zhan, De-Chuan Nanjing Univ State Key Lab Novel Software Technol Nanjing 210023 Peoples R China Hikvis Res Inst Hangzhou 310051 Peoples R China
New classes arise frequently in our ever-changing world, e.g., emerging topics in social media and new types of products in e-commerce. A model should recognize new classes and meanwhile maintain discriminability over... 详细信息
来源: 评论
few-shot class-incremental learning via Cross-Modal Alignment with Feature Replay  7th
Few-Shot Class-Incremental Learning via Cross-Modal Alignmen...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Li, Yanan He, Linpu Lin, Feng Wang, Donghui Zhejiang Lab Res Ctr Frontier Fundamental Studies Hangzhou Peoples R China Zhejiang Univ Dept Comp Sci & Technol Hangzhou Peoples R China
few-shot class-incremental learning (FSCIL) studies the problem of continually learning novel concepts from a limited training data without catastrophically forgetting the old ones at the meantime. While most existing... 详细信息
来源: 评论
few-shot class-incremental learning via Compact and Separable Features for Fine-Grained Vehicle Recognition
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2022年 第11期23卷 21418-21429页
作者: Li, De-Wang Huang, Hua Beijing Inst Technol Sch Comp Sci & Technol Beijing 100081 Peoples R China Beijing Normal Univ Sch Artificial Intelligence Beijing 100875 Peoples R China
Most of the existing deep learning-based fine-grained vehicle recognition methods collect a large-scale training set in advance and train a model based on the closed-world assumption. However, in the real world, new c... 详细信息
来源: 评论
few-shot class-incremental learning for EEG-Based Emotion Recognition  29th
Few-Shot Class-Incremental Learning for EEG-Based Emotion Re...
收藏 引用
29th International Conference on Neural Information Processing
作者: Ma, Tian-Fang Zheng, Wei-Long Lu, Bao-Liang Shanghai Jiao Tong Univ Dept Comp Sci & Engn 800 Dongchuan Rd Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ RuiJin Hosp RuiJin Mihoyo Lab Sch Med 197 Ruijin 2nd Rd Shanghai 200020 Peoples R China Shanghai Jiao Tong Univ Key Lab Shanghai Commiss Intelligent Interact & C 800 Dongchuan Rd Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ RuiJin Hosp Clin Neurosci Ctr Sch Med 197 Ruijin 2nd Rd Shanghai 200020 Peoples R China Shanghai Jiao Tong Univ Brain Sci & Technol Res Ctr 800 Dong Chuan Rd Shanghai 200240 Peoples R China
Current advanced deep neural networks can greatly improve the performance of emotion recognition tasks in affective Brain-Computer Interfaces (aBCI). Basic human emotions could be induced and electroencephalographic (... 详细信息
来源: 评论
FSCIL-EACA: few-shot class-incremental learning Network Based on Embedding Augmentation and classifier Adaptation for Image classification
收藏 引用
Chinese Journal of Electronics 2024年 第1期33卷 139-152页
作者: Ruru ZHANG Haihong E Meina SONG School of Computer Science Beijing University of Posts and Telecommunications Education Department Information Network Engineering Research Center Beijing University of Posts and Telecommunications
The ability to learn incrementally is critical to the long-term operation of AI systems. Benefiting from the power of few-shot class-incremental learning(FSCIL), deep learning models can continuously recognize new cla... 详细信息
来源: 评论
Prompt-Based Concept learning for few-shot class-incremental learning
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2025年 第5期35卷 4991-5005页
作者: Li, Shuo Liu, Fang Jiao, Licheng Li, Lingling Chen, Puhua Liu, Xu Ma, Wenping Xidian Univ Int Res Ctr Intelligent Percept & Computat Sch Artificial Intelligence Key Lab Intelligent Percept & Image Understanding Xian 710071 Peoples R China
few-shot class-incremental learning (FSCIL) faces a huge stability-plasticity challenge due to continuously learning knowledge from new classes with a small number of training samples without forgetting the knowledge ... 详细信息
来源: 评论
A prompt regularization approach to enhance few-shot class-incremental learning with Two-Stage classifier
收藏 引用
NEURAL NETWORKS 2025年 188卷 107453页
作者: Hao, Meilan Gu, Yizhan Dong, Kejian Tiwari, Prayag Lv, Xiaoqing Ning, Xin Hebei Univ Engn Sch Informat & Elect Engn Handan 056038 Peoples R China Chinese Acad Sci Inst Semicond Beijing 100083 Peoples R China Halmstad Univ Sch Informat Technol SE-30118 Halmstad Sweden Beijing Ratu Technol Co Ltd Beijing 100096 Peoples R China
With a limited number of labeled samples, few-shot class-incremental learning (FSCIL) seeks to efficiently train and update models without forgetting previously learned tasks. Because pre-trained models can learn exte... 详细信息
来源: 评论