咨询与建议

限定检索结果

文献类型

  • 33 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 49 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 48 篇 工学
    • 36 篇 计算机科学与技术...
    • 24 篇 电气工程
    • 9 篇 软件工程
    • 8 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 2 篇 机械工程
    • 2 篇 土木工程
    • 2 篇 网络空间安全
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 9 篇 医学
    • 9 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 7 篇 理学
    • 3 篇 地球物理学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 数学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 49 篇 few-shot image c...
  • 10 篇 metric learning
  • 8 篇 training
  • 7 篇 task analysis
  • 7 篇 feature extracti...
  • 5 篇 deep learning
  • 4 篇 semantics
  • 4 篇 measurement
  • 4 篇 meta-learning
  • 3 篇 transformer
  • 3 篇 image classifica...
  • 3 篇 attention mechan...
  • 2 篇 variational infe...
  • 2 篇 representation l...
  • 2 篇 transfer learnin...
  • 2 篇 prototypes
  • 2 篇 metalearning
  • 2 篇 remote sensing s...
  • 2 篇 euclidean distan...
  • 2 篇 few shot learnin...

机构

  • 4 篇 univ chinese aca...
  • 3 篇 beijing univ pos...
  • 3 篇 lanzhou univ tec...
  • 2 篇 soochow univ sch...
  • 2 篇 china univ petr ...
  • 2 篇 tianjin univ col...
  • 2 篇 chinese acad sci...
  • 2 篇 ucl dept stat sc...
  • 1 篇 qingdao chrystar...
  • 1 篇 yangzhou univ sc...
  • 1 篇 univ warsaw krak...
  • 1 篇 gree elect appli...
  • 1 篇 city univ london...
  • 1 篇 school of scienc...
  • 1 篇 zhejiang univers...
  • 1 篇 northwestern pol...
  • 1 篇 department of co...
  • 1 篇 china univ petr ...
  • 1 篇 key lab pattern ...
  • 1 篇 nanjing normal u...

作者

  • 3 篇 ma zhanyu
  • 3 篇 li xiaoxu
  • 2 篇 zhou li
  • 2 篇 fu wen
  • 2 篇 zhang min
  • 2 篇 sun zhe
  • 2 篇 zhang qieshi
  • 2 篇 zheng wang
  • 2 篇 wang donglin
  • 2 篇 cao weijia
  • 2 篇 xing lei
  • 2 篇 cheng jun
  • 2 篇 wu fuxiang
  • 2 篇 guo pengfei
  • 2 篇 zhu rui
  • 2 篇 hao fusheng
  • 2 篇 xue jing-hao
  • 2 篇 liu weifeng
  • 2 篇 liu baodi
  • 2 篇 ma yuteng

语言

  • 49 篇 英文
检索条件"主题词=Few-Shot Image Classification"
49 条 记 录,以下是1-10 订阅
排序:
Selectively Augmented Attention Network for few-shot image classification
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2025年 第2期35卷 1180-1192页
作者: Li, Xiaoxu Wang, Xiangyang Zhu, Rui Ma, Zhanyu Cao, Jie Xue, Jing-Hao Lanzhou Univ Technol Sch Comp & Commun Lanzhou 730050 Peoples R China City St Georges Univ London Fac Actuarial Sci & Insurance Bayes Business Sch London England Beijing Univ Posts & Telecommun Sch Artificial Intelligence Pattern Recognit & Intelligent Syst Lab Beijing 100876 Peoples R China UCL Dept Stat Sci London WC1E 6BT England
few-shot image classification is a challenging task that aims to learn from a limited number of labelled training images a classification model that can be generalised to unseen classes. Two strategies are usually tak... 详细信息
来源: 评论
Learning to Calibrate Prototypes for few-shot image classification
收藏 引用
COGNITIVE COMPUTATION 2025年 第1期17卷 1-13页
作者: Liang, Chenchen Jiang, Chenyi Wang, Shidong Zhang, Haofeng Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China Newcastle Univ Sch Engn Newcastle Upon Tyne NE17RU England
few-shot learning (FSL) aims to generalise the model to novel classes by using a limited amount of discriminative samples (a.k.a., prototypes). With few labelled samples, there is much uncertainty and randomness in th... 详细信息
来源: 评论
Adaptive feature recalibration transformer for enhancing few-shot image classification
收藏 引用
VISUAL COMPUTER 2025年 1-15页
作者: Song, Wei Huang, Yaobin Jiangnan Univ Sch Artificial Intelligence & Comp Sci Jiangsu Prov Engn Lab Pattern Recognit & Computat Wuxi 214122 Peoples R China
few-shot image classification aims to generalize prior knowledge from abundant base classes to novel categories with limited labeled samples. Current semantic alignment methods struggle with irrelevant regions interfe... 详细信息
来源: 评论
Cluster-HGNN: Deep Local Features Clustering for few-shot image classification With Hybrid Graph Neural Networks
收藏 引用
IEEE ACCESS 2025年 13卷 30965-30975页
作者: Wu, Hongxuan Xin, Like Nanjing Normal Univ Sch Comp & Elect Informat Nanjing 210023 Peoples R China Nanjing Normal Univ Sch Math Sci Nanjing 210023 Peoples R China
Graph neural networks (GNNs) have shown great promise in few-shot learning, where they typically represent the entire feature of a sample as a node. However, this approach can overlook finer details within the sample,... 详细信息
来源: 评论
PrototypeFormer: Learning to explore prototype relationships for few-shot image classification
收藏 引用
NEUROCOMPUTING 2025年 640卷
作者: Su, Meijuan He, Feihong Li, Gang Li, Fanzhang Soochow Univ Sch Comp Sci & Technol Suzhou 215006 Peoples R China Sun Yat Sen Univ Sch Cyberspace Secur Shenzhen 518107 Peoples R China Chinese Acad Sci Inst Software Beijing 100190 Peoples R China
few-shot image classification has received considerable attention for overcoming the challenge of limited classification performance with limited samples in novel classes. Most existing works employ sophisticated lear... 详细信息
来源: 评论
TST_MFL: Two-stage training based metric fusion learning for few-shot image classification
收藏 引用
INFORMATION FUSION 2025年 113卷
作者: Sun, Zhe Zheng, Wang Guo, Pengfei Wang, Mingyang Yanshan Univ Dept Informat Sci & Engn Qinhuangdao Peoples R China
Addressing the limitations of most few-shot learning (FSL) methods, particularly their insufficient single-feature discriminability and generalization during pre-training encoding, this paper introduces a novel approa... 详细信息
来源: 评论
Variational Neuron Shifting for few-shot image classification Across Domains
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2024年 26卷 1460-1473页
作者: Zuo, Liyun Wang, Baoyan Zhang, Lei Xu, Jun Zhen, Xiantong Guangdong Univ Petrochem Technol Maoming 525011 Peoples R China Nankai Univ Sch Stat & Data Sci Tianjin 300071 Peoples R China
few-shot image classification aims to recognize unseen classes with few labeled samples. Existing meta-learning models learn the ability of learning good representation or model parameters, in order to adapt to new ta... 详细信息
来源: 评论
KGTN-ens: few-shot image classification with knowledge graph ensembles
收藏 引用
APPLIED INTELLIGENCE 2024年 第2期54卷 1893-1908页
作者: Filipiak, Dominik Fensel, Anna Filipowska, Agata Univ Innsbruck Innrain 52 A-6020 Innsbruck Austria Univ Warsaw Krakowskie Przedmiescie 26-28 PL-00927 Warsaw Poland Wageningen Univ & Res Bioinformat Droevendaalsesteeg 2 NL-6708 PB Wageningen Netherlands Poznan Univ Econ & Business Fac Econ Dept Microecon Al Niepodległosci 10 PL-61875 Poznan Poland
We propose KGTN-ens, a framework extending the recent Knowledge GraphTransferNetwork (KGTN) in order to incorporate multiple knowledge graph embeddings at a small cost. There are many real-world scenarios in which the... 详细信息
来源: 评论
few-shot image classification via hybrid representation
收藏 引用
PATTERN RECOGNITION 2024年 155卷
作者: Liu, Bao-Di Shao, Shuai Zhao, Chunyan Xing, Lei Liu, Weifeng Cao, Weijia Zhou, Yicong China Univ Petr Coll Control Sci & Engn Qingdao 266580 Peoples R China Zhejiang Lab Hangzhou 311121 Zhejiang Peoples R China Suzhou Centennial Coll Suzhou Peoples R China Qingdao ChryStar Elect Technol Co Ltd Qingdao 266580 Peoples R China Chinese Acad Sci Aerosp Informat Res Inst Beijing 100094 Peoples R China Univ Macau Fac Sci & Technol Dept Comp & Informat Sci Taipa Macau Peoples R China
few -shot image classification aims to learn an embedding model on the base datasets and design a base learner to recognize novel categories. The few -shot image classification framework is a two-phase process. First,... 详细信息
来源: 评论
Class-Irrelevant Feature Removal for few-shot image classification
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025年 第5期36卷 9577-9591页
作者: Hao, Fusheng Liu, Liu Wu, Fuxiang Zhang, Qieshi Cheng, Jun Chinese Acad Sci Shenzhen Inst Adv Technol Guangdong Hong Kong Macao Joint Lab Human Machine Shenzhen 518055 Peoples R China Chinese Acad Sci Shenzhen Peoples R China
Most existing few-shot image classification methods employ global pooling to aggregate class-relevant local features in a data-drive manner. Due to the difficulty and inaccuracy in locating class-relevant regions in c... 详细信息
来源: 评论