咨询与建议

限定检索结果

文献类型

  • 33 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 49 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 48 篇 工学
    • 36 篇 计算机科学与技术...
    • 24 篇 电气工程
    • 9 篇 软件工程
    • 8 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 2 篇 机械工程
    • 2 篇 土木工程
    • 2 篇 网络空间安全
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 9 篇 医学
    • 9 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 7 篇 理学
    • 3 篇 地球物理学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 数学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 49 篇 few-shot image c...
  • 10 篇 metric learning
  • 8 篇 training
  • 7 篇 task analysis
  • 7 篇 feature extracti...
  • 5 篇 deep learning
  • 4 篇 semantics
  • 4 篇 measurement
  • 4 篇 meta-learning
  • 3 篇 transformer
  • 3 篇 image classifica...
  • 3 篇 attention mechan...
  • 2 篇 variational infe...
  • 2 篇 representation l...
  • 2 篇 transfer learnin...
  • 2 篇 prototypes
  • 2 篇 metalearning
  • 2 篇 remote sensing s...
  • 2 篇 euclidean distan...
  • 2 篇 few shot learnin...

机构

  • 4 篇 univ chinese aca...
  • 3 篇 beijing univ pos...
  • 3 篇 lanzhou univ tec...
  • 2 篇 soochow univ sch...
  • 2 篇 china univ petr ...
  • 2 篇 tianjin univ col...
  • 2 篇 chinese acad sci...
  • 2 篇 ucl dept stat sc...
  • 1 篇 qingdao chrystar...
  • 1 篇 yangzhou univ sc...
  • 1 篇 univ warsaw krak...
  • 1 篇 gree elect appli...
  • 1 篇 city univ london...
  • 1 篇 school of scienc...
  • 1 篇 zhejiang univers...
  • 1 篇 northwestern pol...
  • 1 篇 department of co...
  • 1 篇 china univ petr ...
  • 1 篇 key lab pattern ...
  • 1 篇 nanjing normal u...

作者

  • 3 篇 ma zhanyu
  • 3 篇 li xiaoxu
  • 2 篇 zhou li
  • 2 篇 fu wen
  • 2 篇 zhang min
  • 2 篇 sun zhe
  • 2 篇 zhang qieshi
  • 2 篇 zheng wang
  • 2 篇 wang donglin
  • 2 篇 cao weijia
  • 2 篇 xing lei
  • 2 篇 cheng jun
  • 2 篇 wu fuxiang
  • 2 篇 guo pengfei
  • 2 篇 zhu rui
  • 2 篇 hao fusheng
  • 2 篇 xue jing-hao
  • 2 篇 liu weifeng
  • 2 篇 liu baodi
  • 2 篇 ma yuteng

语言

  • 49 篇 英文
检索条件"主题词=Few-Shot Image Classification"
49 条 记 录,以下是21-30 订阅
排序:
Unsupervised Semantic Segmentation with Feature Enhancement for few-shot image classification  10
Unsupervised Semantic Segmentation with Feature Enhancement ...
收藏 引用
10th International Conference on Advanced Cloud and Big Data (CBD)
作者: Li, Xiang Xu, Zhuoming Xu, Qi Tang, Yan Hohai Univ Coll Comp & Informat Nanjing Peoples R China
image classification is a typical task in big data applications. As a few-shot learning (FSL) task, the few-shot image classification attempts to learn a new visual concept from limited labelled images. The existing f... 详细信息
来源: 评论
A Differentiable Architecture Search Approach for few-shot image classification  31st
A Differentiable Architecture Search Approach for Few-Shot I...
收藏 引用
31st International Conference on Artificial Neural Networks (ICANN)
作者: He, Chunmao Zhang, Lingyun Huang, Songqing Zhang, Pingjian Guangdong Prov Key Lab High Performance Servo Sys Zhuhai Peoples R China GREE Elect Appliances Inc Zhuhai Zhuhai Peoples R China South China Univ Technol Guangzhou Peoples R China
few-shot image classification is to learn models to distinguish between unseen categories, even though only a few labeled samples are involved in the training process. To alleviate the over-fitting problem caused by i... 详细信息
来源: 评论
Global- and local-aware feature augmentation with semantic orthogonality for few-shot image classification
收藏 引用
PATTERN RECOGNITION 2023年 第1期142卷
作者: Shi, Boyao Li, Wenbin Huo, Jing Zhu, Pengfei Wang, Lei Gao, Yang Nanjing Univ State Key Lab Novel Software Technol Nanjing 210023 Peoples R China Tianjin Univ Coll Intelligence & Comp Tianjin 300354 Peoples R China Univ Wollongong Sch Comp & Informat Technol Wollongong 2522 Australia
As for few-shot image classification, recently, some works revisit the standard transfer learning paradigm, i.e., pre-training and fine-tuning, and have achieved some success. However, we find that this kind of method... 详细信息
来源: 评论
Transductive clustering optimization learning for few-shot image classification
收藏 引用
JOURNAL OF ELECTRONIC IMAGING 2023年 第4期32卷 043005-043005页
作者: Wang, Yi Bian, Xiong Zhu, Songhao Nanjing Univ Posts & Telecommun Coll Automat & Artificial Intelligence Nanjing Peoples R China
few-shot image classification aims to perform image classification on new categories with only a small amount of labeled training data. However, it is difficult to complete such a task under the existing conditions. T... 详细信息
来源: 评论
Res-SVDNet: A Metric Learning Method for few-shot image classification  40
Res-SVDNet: A Metric Learning Method for Few-shot Image Clas...
收藏 引用
40th Chinese Control Conference (CCC)
作者: Zhang, He Liang, Lili Xian Univ Technol Fac Automat & Informat Engn Xian 710048 Peoples R China
Metric learning based few-shot image classification has recently received much attention for simplicity and efficiency. Its performance depends highly on the feature extractor and classifier. In this paper, we propose... 详细信息
来源: 评论
CoCoOpter: Pre-train, prompt, and fine-tune the vision-language model for few-shot image classification
收藏 引用
INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL 2023年 第2期12卷 27-27页
作者: Yan, Jie Xie, Yuxiang Guo, Yanming Wei, Yingmei Zhang, Xiaoping Luan, Xidao Natl Univ Def Technol Coll Syst Engn Changsha 410000 Peoples R China Toronto Metropolitan Univ Ryerson Univ Finance Dept Dept Elect Comp & Biomed EngnTed Rogers Sch Manag Toronto ON Canada Changsha Univ Coll Comp Engn & Appl Math Changsha 410000 Peoples R China
few-shot image classification aims at learning to generalize to unseen new categories from a few training samples. Transfer learning is one prominent approach to the task, which first learns a backbone from the base c... 详细信息
来源: 评论
Complementing Representation Deficiency in few-shot image classification: A Meta-Learning Approach  25
Complementing Representation Deficiency in Few-shot Image Cl...
收藏 引用
25th International Conference on Pattern Recognition (ICPR)
作者: Zhong, Xian Gu, Cheng Huang, Wenxin Li, Lin Chen, Shuqin Lin, Chia-Wen Wuhan Univ Technol Hubei Key Lab Transportat Internet Things Wuhan Peoples R China Wuhan Univ Technol Sch Comp Sci & Technol Wuhan Peoples R China Wuhan Univ Sch Comp Sci Wuhan Peoples R China Natl Tsing Hua Univ Dept Elect Engn Hsinchu Taiwan Natl Tsing Hua Univ Inst Commun Engn Hsinchu Taiwan
few-shot learning is a challenging problem that has attracted more and more attention recently since abundant training samples are difficult to obtain in practical applications. Meta-learning has been proposed to addr... 详细信息
来源: 评论
Layer-Wise Adaptive Updating for few-shot image classification
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2020年 27卷 2044-2048页
作者: Qin, Yunxiao Zhang, Weiguo Wang, Zezheng Zhao, Chenxu Shi, Jingping Northwestern Polytech Univ Xian 710129 Peoples R China Beijing Kwai Technol Beijing 102600 Peoples R China MiningLamp Technol Beijing 100000 Peoples R China
few-shot image classification (FSIC), which requires a model to recognize new categories via learning from few images of these categories, has attracted lots of attention. Recently, meta-learning based methods have be... 详细信息
来源: 评论
SCNet: few-shot image classification via self-correlational and cross spatial-correlation attention
收藏 引用
Engineering Science and Technology, an International Journal 2025年 67卷
作者: He, Congqing Xu, Ding Gong, Ke Guo, Fusen Wei, Dapeng School of Computer Sciences Universiti Sains Malaysia Penang 11800 Malaysia Computer Science Department Harbin Institute of Technology Harbin 150000 China College of Mechanical Engineering North University of China Taiyuan 030000 China School of Science Computing and Engineering Technologies Swinburne University of Technology Melbourne 3122 Australia School of Design & Arts Beijing Institute of Technology Beijing 100081 China
Recently, few-shot learning has gained significant attention across various industries due to its ability to rapidly adapt and learn new tasks with few labeled training data. However, existing methods often struggle w... 详细信息
来源: 评论
Res-SVDNet: A Metric Learning Method for few-shot image classification
Res-SVDNet: A Metric Learning Method for Few-shot Image Clas...
收藏 引用
第40届中国控制会议
作者: He Zhang Lili Liang Faculty of Automation and Information Engineering Xi’an University of Technology
Metric learning based few-shot image classification has recently received much attention for simplicity and *** performance depends highly on the feature extractor and classifier. In this paper, we propose an alternat... 详细信息
来源: 评论