咨询与建议

限定检索结果

文献类型

  • 83 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 127 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 126 篇 工学
    • 83 篇 计算机科学与技术...
    • 48 篇 电气工程
    • 15 篇 测绘科学与技术
    • 14 篇 软件工程
    • 13 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 9 篇 信息与通信工程
    • 9 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 纺织科学与工程
  • 31 篇 医学
    • 31 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 28 篇 理学
    • 14 篇 地球物理学
    • 9 篇 物理学
    • 7 篇 化学
    • 3 篇 地理学
    • 3 篇 生物学
    • 2 篇 数学
    • 2 篇 统计学(可授理学、...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 127 篇 few-shot object ...
  • 23 篇 object detection
  • 16 篇 few-shot learnin...
  • 12 篇 transfer learnin...
  • 10 篇 remote sensing i...
  • 9 篇 meta-learning
  • 7 篇 contrastive lear...
  • 6 篇 task analysis
  • 6 篇 feature extracti...
  • 6 篇 detectors
  • 5 篇 deep learning
  • 5 篇 metric learning
  • 5 篇 training
  • 4 篇 data augmentatio...
  • 3 篇 transformer
  • 3 篇 proposals
  • 3 篇 feature enhancem...
  • 3 篇 prototypes
  • 3 篇 fine-tuning
  • 3 篇 meta learning

机构

  • 3 篇 northwestern pol...
  • 3 篇 univ chinese aca...
  • 3 篇 chinese acad sci...
  • 2 篇 xidian univ sch ...
  • 2 篇 ningbo univ fac ...
  • 2 篇 beijing univ tec...
  • 2 篇 univ chinese aca...
  • 2 篇 natl engn lab cr...
  • 2 篇 beijing inst rem...
  • 2 篇 xidian univ guan...
  • 2 篇 tongji univ coll...
  • 2 篇 beihang univ sta...
  • 2 篇 northwestern pol...
  • 2 篇 fudan univ sch d...
  • 2 篇 wuhan inst techn...
  • 2 篇 nanjing univ pos...
  • 2 篇 nanjing univ sci...
  • 2 篇 beijing key lab ...
  • 2 篇 univ elect sci &...
  • 2 篇 purple mt labs m...

作者

  • 3 篇 wang jian
  • 3 篇 cheng gong
  • 3 篇 han junwei
  • 3 篇 zhao lei
  • 3 篇 wang chen
  • 2 篇 shi hongbo
  • 2 篇 wang lei
  • 2 篇 zhang yanan
  • 2 篇 tao yang
  • 2 篇 wang wenjian
  • 2 篇 cai youpeng
  • 2 篇 zhu songhao
  • 2 篇 le jeune pierre
  • 2 篇 tang chi-keung
  • 2 篇 liu weijie
  • 2 篇 fan qi
  • 2 篇 fu yanwei
  • 2 篇 tan shuai
  • 2 篇 tai yu-wing
  • 2 篇 xu chengming

语言

  • 126 篇 英文
  • 1 篇 其他
检索条件"主题词=Few-Shot Object Detection"
127 条 记 录,以下是1-10 订阅
排序:
few-shot object detection Based on Global Domain Adaptation Strategy
收藏 引用
NEURAL PROCESSING LETTERS 2025年 第1期57卷 1-16页
作者: Gong, Xiaolin Cai, Youpeng Wang, Jian Liu, Daqing Ma, Yongtao Tianjin Univ Sch Microelect Tianjin 300072 Peoples R China Tianjin Univ Tianjin Key Lab Imaging & Sensing Microelect Techn Tianjin 300072 Peoples R China Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China
Aiming to detect novel objects from only a few annotated samples, few-shot object detection (FSOD) has undergone remarkable development. Previous works rarely pay attention to the perspective of gradient propagation t... 详细信息
来源: 评论
few-shot object detection for Remote Sensing Images via Pseudo-Sample Generation and Feature Enhancement
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第8期15卷 4477-4477页
作者: Huang, Zhaoguo Chen, Danyang Zhong, Cheng Guangxi Univ Sch Comp Elect & Informat Nanning 530004 Peoples R China Key Lab Parallel Distributed & lntelligent Comp Gu Nanning 530004 Peoples R China
few-shot object detection (FSOD) based on fine-tuning is essential for analyzing optical remote sensing images. However, existing methods mainly focus on natural images and overlook the scale variations in remote sens... 详细信息
来源: 评论
few-shot object detection via Dual-Domain Feature Fusion and Patch-Level Attention
收藏 引用
清华大学学报自然科学版(英文版) 2025年 第3期30卷 1237-1250页
作者: Guangli Ren Jierui Liu Mengyao Wang Peiyu Guan Zhiqiang Cao Junzhi Yu State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of AutomationChinese Academy of SciencesBeijing 100190China School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100049China Department of Advanced Manufacturing and Robotics Peking UniversityBeijing 100871China
few-shot object detection receives much attention with the ability to detect novel class objects using limited annotated *** transfer learning-based solution becomes popular due to its simple training with good accura... 详细信息
来源: 评论
few-shot object detection via Disentangling Class-Related Factors in Feature Distribution  7th
Few-Shot Object Detection via Disentangling Class-Related Fa...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Wei, Lili Tang, Xiaofen Dang, Jin Ningxia Univ Sch Informat Engn Yinchuan 750021 Peoples R China Ningxia Key Lab Artificial Intelligence & Informa Yinchuan 750021 Peoples R China Ningxia Normal Univ Sch Math & Comp Sci Guyuan 756099 Peoples R China
few-shot object detection (FSOD) is affected by the long-tailed distribution of data and the discrepancy in sample quantities between base classes and novel classes, leading to evident data bias. As a result, the gene... 详细信息
来源: 评论
SFIDM: few-shot object detection in Remote Sensing Images with Spatial-Frequency Interaction and Distribution Matching
收藏 引用
REMOTE SENSING 2025年 第6期17卷 972-972页
作者: Wang, Yong Li, Jingtao Guo, Jiahui Liu, Rui Cao, Qiusheng Li, Danping Wang, Lei Xidian Univ Sch Elect Engn Xian 710071 Peoples R China 27th Res Inst China Elect Technol Grp Corp Zhengzhou 450047 Peoples R China Xidian Univ Guangzhou Inst Technol Guangzhou 510555 Peoples R China Xidian Univ Kunshan Innovat Res Inst Kunshan 215300 Peoples R China Xidian Univ Sch Telecommun Engn Xian 710071 Peoples R China Shaanxi Univ Technol Key Lab Shaanxi Prov Higher Educ Inst Vortex Elect Hanzhong 723000 Peoples R China
few-shot object detection (FSOD) in remote sensing images (RSIs) faces challenges such as data scarcity, difficulty in detecting small objects, and underutilization of frequency-domain information. Existing methods of... 详细信息
来源: 评论
Background suppression and comprehensive prototype pyramid distillation for few-shot object detection
收藏 引用
ROBOTICS AND AUTONOMOUS SYSTEMS 2025年 187卷
作者: Li, Ning Wang, Mingliang Yang, Gaochao Li, Bo Yuan, Baohua Xu, Shoukun Qi, Jun Changzhou Univ Sch Comp Sci & Artificial Intelligence Aliyun Sch Big Data Sch Software Changzhou 213164 Peoples R China HoHai Univ Sch Comp Sci & Software Engn Nanjing 210098 Peoples R China Xian Jiaotong Liverpool Univ Dept Comp Suzhou 215123 Peoples R China Changzhou Univ Jiangsu Petrochem Proc Key Equipment Digital Twin Changzhou 213164 Peoples R China
few-shot object detection (FSOD) methods can achieve detection of novel classes with only a small number of annotated samples and have received widespread attention in recent years. Meta-learning has been proven to be... 详细信息
来源: 评论
FSMT: few-shot object detection via Multi-Task Decoupled
收藏 引用
PATTERN RECOGNITION LETTERS 2025年 192卷 8-14页
作者: Qin, Jiahui Xu, Yang Fu, Yifan Wu, Zebin Wei, Zhihui Nanjing Univ Sci & Technol Nanjing 210094 Peoples R China Commun Univ China Beijing 100024 Peoples R China
With the advancement of object detection technology, few-shot object detection (FSOD) has become a research hotspot. Existing methods face two major challenges: base models have limited generalization to unseen catego... 详细信息
来源: 评论
A comparative attention framework for better few-shot object detection on aerial images
收藏 引用
PATTERN RECOGNITION 2025年 161卷
作者: Le Jeune, Pierre Bahaduri, Bissmella Mokraoui, Anissa Univ Sorbonne Paris Nord L2TI 99 Ave Jean Baptiste Clement F-93430 Villetaneuse France COSE 5 bis route St Leu F-95360 Montmagny France
few-shot object detection (FSOD) methods are mainly designed and evaluated on natural image datasets such as Pascal VOC and MS COCO. However, it is not clear whether the best methods for natural images are also the be... 详细信息
来源: 评论
Study on few-shot object detection Approach Based on Improved RPN and Feature Aggregation
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第7期15卷 3734-3734页
作者: Pan, Qiyu Fu, Keyi Wang, Gaocai Sun Yat Sen Univ Sch Artificial Intelligence Guangzhou 510275 Peoples R China Guangxi Univ Sch Comp & Elect & Informat Nanning 530004 Peoples R China
In this paper, we propose an improved Region Proposal Network (RPN) by introducing a metric-based nonlinear classifier to compute the similarity between features extracted from the backbone network and those of new cl... 详细信息
来源: 评论
GCSTG: Generating Class-Confusion-Aware Samples With a Tree-Structure Graph for few-shot object detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2025年 34卷 772-784页
作者: Yang, Longrong Zhao, Hanbin Li, Hongliang Qiao, Liang Yang, Ziwei Li, Xi Zhejiang Univ Coll Comp Sci & Technol Hangzhou 310027 Peoples R China Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu 611731 Peoples R China Hikvis Res Inst Hangzhou 310051 Peoples R China
few-shot object detection (FSOD) aims to detect the objects of novel classes using only a few manually annotated samples. With the few novel class samples, learning the inter-class relationships among foreground and c... 详细信息
来源: 评论