咨询与建议

限定检索结果

文献类型

  • 83 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 127 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 126 篇 工学
    • 83 篇 计算机科学与技术...
    • 48 篇 电气工程
    • 15 篇 测绘科学与技术
    • 14 篇 软件工程
    • 13 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 9 篇 信息与通信工程
    • 9 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 纺织科学与工程
  • 31 篇 医学
    • 31 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 28 篇 理学
    • 14 篇 地球物理学
    • 9 篇 物理学
    • 7 篇 化学
    • 3 篇 地理学
    • 3 篇 生物学
    • 2 篇 数学
    • 2 篇 统计学(可授理学、...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 127 篇 few-shot object ...
  • 23 篇 object detection
  • 16 篇 few-shot learnin...
  • 12 篇 transfer learnin...
  • 10 篇 remote sensing i...
  • 9 篇 meta-learning
  • 7 篇 contrastive lear...
  • 6 篇 task analysis
  • 6 篇 feature extracti...
  • 6 篇 detectors
  • 5 篇 deep learning
  • 5 篇 metric learning
  • 5 篇 training
  • 4 篇 data augmentatio...
  • 3 篇 transformer
  • 3 篇 proposals
  • 3 篇 feature enhancem...
  • 3 篇 prototypes
  • 3 篇 fine-tuning
  • 3 篇 meta learning

机构

  • 3 篇 northwestern pol...
  • 3 篇 univ chinese aca...
  • 3 篇 chinese acad sci...
  • 2 篇 xidian univ sch ...
  • 2 篇 ningbo univ fac ...
  • 2 篇 beijing univ tec...
  • 2 篇 univ chinese aca...
  • 2 篇 natl engn lab cr...
  • 2 篇 beijing inst rem...
  • 2 篇 xidian univ guan...
  • 2 篇 tongji univ coll...
  • 2 篇 beihang univ sta...
  • 2 篇 northwestern pol...
  • 2 篇 fudan univ sch d...
  • 2 篇 wuhan inst techn...
  • 2 篇 nanjing univ pos...
  • 2 篇 nanjing univ sci...
  • 2 篇 beijing key lab ...
  • 2 篇 univ elect sci &...
  • 2 篇 purple mt labs m...

作者

  • 3 篇 wang jian
  • 3 篇 cheng gong
  • 3 篇 han junwei
  • 3 篇 zhao lei
  • 3 篇 wang chen
  • 2 篇 shi hongbo
  • 2 篇 wang lei
  • 2 篇 zhang yanan
  • 2 篇 tao yang
  • 2 篇 wang wenjian
  • 2 篇 cai youpeng
  • 2 篇 zhu songhao
  • 2 篇 le jeune pierre
  • 2 篇 tang chi-keung
  • 2 篇 liu weijie
  • 2 篇 fan qi
  • 2 篇 fu yanwei
  • 2 篇 tan shuai
  • 2 篇 tai yu-wing
  • 2 篇 xu chengming

语言

  • 126 篇 英文
  • 1 篇 其他
检索条件"主题词=Few-Shot Object Detection"
127 条 记 录,以下是91-100 订阅
排序:
Fusing Adaptive Meta Feature Weighting for few-shot object detection
Fusing Adaptive Meta Feature Weighting for Few-shot Object D...
收藏 引用
2024 International Conference on Machine Learning and Intelligent Computing, MLIC 2024
作者: Zhou, Peng Liu, Anzhan Zhongyuan University of Technology Zhengzhou450007 China
few-shot object detection models often lack the perceptual ability to detect the target objects and fine-tuning the model on base class images to quickly adapt to new tasks can lead to feature shift issues. We propose... 详细信息
来源: 评论
Text Semantic Fusion Relation Graph Reasoning for few-shot object detection on Remote Sensing Images
收藏 引用
REMOTE SENSING 2023年 第5期15卷 1187页
作者: Zhang, Sanxing Song, Fei Liu, Xianyuan Hao, Xuying Liu, Yujia Lei, Tao Jiang, Ping Chinese Acad Sci Inst Opt & Elect Chengdu 610209 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 101408 Peoples R China Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu 611731 Peoples R China
Most object detection methods based on remote sensing images are generally dependent on a large amount of high-quality labeled training data. However, due to the slow acquisition cycle of remote sensing images and the... 详细信息
来源: 评论
Re-scoring using image-language similarity for few-shot object detection
收藏 引用
COMPUTER VISION AND IMAGE UNDERSTANDING 2024年 241卷
作者: Jung, Min Jae Han, Seung Dae Kim, Joohee Infiniq ALab Seoul 06232 South Korea
few-shot object detection, which focuses on detecting novel objects with few labels, is an emerging challenge in the community. Recent studies show that adapting a pre-trained model or modified loss function can impro... 详细信息
来源: 评论
Prototype-CNN for few-shot object detection in Remote Sensing Images
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2022年 60卷 1页
作者: Cheng, Gong Yan, Bowei Shi, Peizhen Li, Ke Yao, Xiwen Guo, Lei Han, Junwei Northwestern Polytech Univ Res & Dev Inst Shenzhen 518057 Peoples R China Northwestern Polytech Univ Sch Automat Xian 710129 Peoples R China Zhengzhou Inst Surveying & Mapping Zhengzhou 450052 Peoples R China
Recently, due to the excellent representation ability of convolutional neural networks (CNNs), object detection in remote sensing images has undergone remarkable development. However, when trained with a small number ... 详细信息
来源: 评论
Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection
收藏 引用
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION 2024年 105卷
作者: Zhu, Songhao Wang, Yi Nanjing Univ Posts & Telecommun Coll Automat & Artificial Intelligence Nanjing Peoples R China
few-shot object detection method aims to learn novel classes through a small number of annotated novel class samples without having a catastrophic impact on previously learned knowledge, thereby expanding the trained ... 详细信息
来源: 评论
Improved region proposal network for enhanced few-shot object detection
收藏 引用
NEURAL NETWORKS 2024年 180卷 106699页
作者: Shangguan, Zeyu Rostami, Mohammad Univ Southern Calif Dept Comp Sci 3650 McClintock Ave Los Angeles CA 90089 USA
Despite significant success of deep learning in object detection tasks, the standard training of deep neural networks requires access to a substantial quantity of annotated images across all classes. Data annotation i... 详细信息
来源: 评论
Feature reconstruction and metric based network for few-shot object detection
收藏 引用
COMPUTER VISION AND IMAGE UNDERSTANDING 2023年 227卷
作者: Li, Yuewen Feng, Wenquan Lyu, Shuchang Zhao, Qi Dept Elect & Informat Engn Beijing 100191 Peoples R China
In the object detection task, deep learning-based methods always need a large amount of annotated training data. However, annotating a large number of images is labor-intensive. In order to reduce the dependency of ex... 详细信息
来源: 评论
Context Information Refinement for few-shot object detection in Remote Sensing Images
收藏 引用
REMOTE SENSING 2022年 第14期14卷 3255页
作者: Wang, Yan Xu, Chaofei Liu, Cuiwei Li, Zhaokui Shenyang Aerosp Univ Sch Comp Sci Shenyang 110136 Peoples R China
Recently, few-shot object detection based on fine-tuning has attracted much attention in the field of computer vision. However, due to the scarcity of samples in novel categories, obtaining positive anchors for novel ... 详细信息
来源: 评论
MSFFAL: few-shot object detection via Multi-Scale Feature Fusion and Attentive Learning
收藏 引用
SENSORS 2023年 第7期23卷 3609-3609页
作者: Zhang, Tianzhao Sun, Ruoxi Wan, Yong Zhang, Fuping Wei, Jianming Chinese Acad Sci Shanghai Adv Res Inst Shanghai 201210 Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100049 Peoples R China ShanghaiTech Univ Sch Informat Sci & Technol Shanghai 201210 Peoples R China Chinese Acad Sci Inst Rock & Soil Mech State Key Lab Geomech & Geotech Engn Wuhan 430071 Peoples R China
few-shot object detection (FSOD) is proposed to solve the application problem of traditional detectors in scenarios lacking training samples. The meta-learning methods have attracted the researchers' attention for... 详细信息
来源: 评论
Scale Information Enhancement for few-shot object detection on Remote Sensing Images
收藏 引用
REMOTE SENSING 2023年 第22期15卷 5372-5372页
作者: Yang, Zhenyu Zhang, Yongxin Zheng, Jv Yu, Zhibin Zheng, Bing Piciarelli, Claudio Melo-Pinto, Pedro Ocean Univ China Fac Informat Sci & Engn Qingdao 266100 Peoples R China Ocean Univ China Sanya Oceanog Inst Key Lab Ocean Observat & Informat Hainan Prov Sanya 572024 Peoples R China
Recently, deep learning-based object detection techniques have arisen alongside time-consuming training and data collection challenges. Although few-shot learning techniques can boost models with few samples to lighte... 详细信息
来源: 评论