咨询与建议

限定检索结果

文献类型

  • 83 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 127 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 126 篇 工学
    • 83 篇 计算机科学与技术...
    • 48 篇 电气工程
    • 15 篇 测绘科学与技术
    • 14 篇 软件工程
    • 13 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 9 篇 信息与通信工程
    • 9 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 纺织科学与工程
  • 31 篇 医学
    • 31 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 28 篇 理学
    • 14 篇 地球物理学
    • 9 篇 物理学
    • 7 篇 化学
    • 3 篇 地理学
    • 3 篇 生物学
    • 2 篇 数学
    • 2 篇 统计学(可授理学、...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 127 篇 few-shot object ...
  • 23 篇 object detection
  • 16 篇 few-shot learnin...
  • 12 篇 transfer learnin...
  • 10 篇 remote sensing i...
  • 9 篇 meta-learning
  • 7 篇 contrastive lear...
  • 6 篇 task analysis
  • 6 篇 feature extracti...
  • 6 篇 detectors
  • 5 篇 deep learning
  • 5 篇 metric learning
  • 5 篇 training
  • 4 篇 data augmentatio...
  • 3 篇 transformer
  • 3 篇 proposals
  • 3 篇 feature enhancem...
  • 3 篇 prototypes
  • 3 篇 fine-tuning
  • 3 篇 meta learning

机构

  • 3 篇 northwestern pol...
  • 3 篇 univ chinese aca...
  • 3 篇 chinese acad sci...
  • 2 篇 xidian univ sch ...
  • 2 篇 ningbo univ fac ...
  • 2 篇 beijing univ tec...
  • 2 篇 univ chinese aca...
  • 2 篇 natl engn lab cr...
  • 2 篇 beijing inst rem...
  • 2 篇 xidian univ guan...
  • 2 篇 tongji univ coll...
  • 2 篇 beihang univ sta...
  • 2 篇 northwestern pol...
  • 2 篇 fudan univ sch d...
  • 2 篇 wuhan inst techn...
  • 2 篇 nanjing univ pos...
  • 2 篇 nanjing univ sci...
  • 2 篇 beijing key lab ...
  • 2 篇 univ elect sci &...
  • 2 篇 purple mt labs m...

作者

  • 3 篇 wang jian
  • 3 篇 cheng gong
  • 3 篇 han junwei
  • 3 篇 zhao lei
  • 3 篇 wang chen
  • 2 篇 shi hongbo
  • 2 篇 wang lei
  • 2 篇 zhang yanan
  • 2 篇 tao yang
  • 2 篇 wang wenjian
  • 2 篇 cai youpeng
  • 2 篇 zhu songhao
  • 2 篇 le jeune pierre
  • 2 篇 tang chi-keung
  • 2 篇 liu weijie
  • 2 篇 fan qi
  • 2 篇 fu yanwei
  • 2 篇 tan shuai
  • 2 篇 tai yu-wing
  • 2 篇 xu chengming

语言

  • 126 篇 英文
  • 1 篇 其他
检索条件"主题词=Few-Shot Object Detection"
127 条 记 录,以下是121-130 订阅
排序:
few-shot detection Based on an Enhanced Prototype for Outdoor Small Forbidden objects  39th
Few-Shot Detection Based on an Enhanced Prototype for Outdoo...
收藏 引用
39th Computer Graphics International Conference (CGI)
作者: Chen, Jia Chen, Xinzhou Huang, Jin Hu, Xinrong Peng, Tao Wuhan Text Univ Wuhan 430200 Hubei Peoples R China Engn Res Ctr Hubei Prov Clothing Informat Wuhan 430200 Hubei Peoples R China
In this paper, we propose an enhanced prototype based on a regional many-to-many attention mechanism for few-shot object detection of forbidden objects such as knives and sticks. Specifically, First, we use the origin... 详细信息
来源: 评论
few-shot Waste detection Based on Dual Attention and Dynamic Hard Sample Triplet Loss  14
Few-Shot Waste Detection Based on Dual Attention and Dynamic...
收藏 引用
14th Asian Control Conference (ASCC)
作者: Li, Zhengzhen Ren, Kun Feng, Bo Du, Yongping Hou, Ying Han, Honggui Beijing Univ Technol Fac Informat Technol Engn Res Ctr Digital Community Minist EducBeijing Lab Urban Mass Transit Beijing Peoples R China
Deep learning-based intelligent waste detection has been appealing and promising for resource conservation and environmental preservation. However, collecting and labeling numerous samples to train waste detection mod... 详细信息
来源: 评论
Tangut Text detection with few-shot Learning  12
Tangut Text Detection with Few-Shot Learning
收藏 引用
12th International Conference on Information Systems and Computing Technology
作者: Zhao, Xinyi Shi, Wei NingXia Univ Sch Informat Engn Yinchuan Ningxia Peoples R China
The dearth of labeled Tangut ancient book pages severely hampers the development of accurate text detection models. To mitigate this issue, we introduce a lightweight few-shot object detection model Tangut-YOLOv8. Dra... 详细信息
来源: 评论
Road defect detection from on-board cameras with scarce and cross-domain data
收藏 引用
AUTOMATION IN CONSTRUCTION 2022年 144卷
作者: Zhou, Wei Zhan, Yunfei Zhang, Hancheng Zhao, Lei Wang, Chen Southeast Univ Sch Transportat Southeast Univ Rd Nanjing 211189 Jiangsu Peoples R China Purple Mt Labs Mozhou East Rd Nanjing 210008 Jiangsu Peoples R China
Deep learning methods have attained promising performance on road defect detection from on-board cameras. However, they oftentimes rely heavily on well-annotated datasets with sufficient samples, limiting the practica... 详细信息
来源: 评论
Faster OreFSDet: A lightweight and effective few-shot object detector for ore images
收藏 引用
PATTERN RECOGNITION 2023年 第1期141卷
作者: Zhang, Yang Cheng, Le Peng, Yuting Xu, Chengming Fu, Yanwei Wu, Bo Sun, Guodong Hubei Univ Technol Sch Mech Engn Wuhan 430068 Peoples R China Hubei Univ Technol Hubei Key Lab Modern Mfg Qual Engn Wuhan 430068 Peoples R China Nanjing Univ Natl Key Lab Novel Software Technol Nanjing 210023 Peoples R China Fudan Univ Sch Data Sci Shanghai 200433 Peoples R China Chinese Acad Sci Shanghai Adv Res Inst Shanghai 201210 Peoples R China
For the ore particle size detection, obtaining a sizable amount of high-quality ore labeled data is time-consuming and expensive. General object detection methods often suffer from severe over-fitting with scarce labe... 详细信息
来源: 评论
few-shot Steel Plate Surface Defect detection with Multi-Relation Aggregation and Adaptive Support Learning
收藏 引用
ISIJ INTERNATIONAL 2023年 第10期63卷 1727-1737页
作者: Deng, Yongbiao Song, Yonghong Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China
As a challenging problem in industrial scenarios, few-shot steel plate surface defect detection aims to detect novel classes given only few defect samples. Most existing few-shot object detection (FSOD) methods usuall... 详细信息
来源: 评论
Automatic waste detection with few annotated samples: Improving waste management efficiency
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2023年 第1期120卷
作者: Zhou, Wei Zhao, Lei Huang, Hongpu Chen, Yuzhi Xu, Sixuan Wang, Chen Southeast Univ Sch Transportat Southeast Univ Rd Nanjing 211189 Jiangsu Peoples R China Purple Mt Labs Mozhou East Rd Nanjing 210008 Jiangsu Peoples R China
Automatic waste detection in natural environments exhibits a great potential to improve the efficiency and reduce the labor cost of waste management. Recent deep learning-based waste detectors rely heavily on substant... 详细信息
来源: 评论