咨询与建议

限定检索结果

文献类型

  • 83 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 127 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 126 篇 工学
    • 83 篇 计算机科学与技术...
    • 48 篇 电气工程
    • 15 篇 测绘科学与技术
    • 14 篇 软件工程
    • 13 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 9 篇 信息与通信工程
    • 9 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 纺织科学与工程
  • 31 篇 医学
    • 31 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 28 篇 理学
    • 14 篇 地球物理学
    • 9 篇 物理学
    • 7 篇 化学
    • 3 篇 地理学
    • 3 篇 生物学
    • 2 篇 数学
    • 2 篇 统计学(可授理学、...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 127 篇 few-shot object ...
  • 23 篇 object detection
  • 16 篇 few-shot learnin...
  • 12 篇 transfer learnin...
  • 10 篇 remote sensing i...
  • 9 篇 meta-learning
  • 7 篇 contrastive lear...
  • 6 篇 task analysis
  • 6 篇 feature extracti...
  • 6 篇 detectors
  • 5 篇 deep learning
  • 5 篇 metric learning
  • 5 篇 training
  • 4 篇 data augmentatio...
  • 3 篇 transformer
  • 3 篇 proposals
  • 3 篇 feature enhancem...
  • 3 篇 prototypes
  • 3 篇 fine-tuning
  • 3 篇 meta learning

机构

  • 3 篇 northwestern pol...
  • 3 篇 univ chinese aca...
  • 3 篇 chinese acad sci...
  • 2 篇 xidian univ sch ...
  • 2 篇 ningbo univ fac ...
  • 2 篇 beijing univ tec...
  • 2 篇 univ chinese aca...
  • 2 篇 natl engn lab cr...
  • 2 篇 beijing inst rem...
  • 2 篇 xidian univ guan...
  • 2 篇 tongji univ coll...
  • 2 篇 beihang univ sta...
  • 2 篇 northwestern pol...
  • 2 篇 fudan univ sch d...
  • 2 篇 wuhan inst techn...
  • 2 篇 nanjing univ pos...
  • 2 篇 nanjing univ sci...
  • 2 篇 beijing key lab ...
  • 2 篇 univ elect sci &...
  • 2 篇 purple mt labs m...

作者

  • 3 篇 wang jian
  • 3 篇 cheng gong
  • 3 篇 han junwei
  • 3 篇 zhao lei
  • 3 篇 wang chen
  • 2 篇 shi hongbo
  • 2 篇 wang lei
  • 2 篇 zhang yanan
  • 2 篇 tao yang
  • 2 篇 wang wenjian
  • 2 篇 cai youpeng
  • 2 篇 zhu songhao
  • 2 篇 le jeune pierre
  • 2 篇 tang chi-keung
  • 2 篇 liu weijie
  • 2 篇 fan qi
  • 2 篇 fu yanwei
  • 2 篇 tan shuai
  • 2 篇 tai yu-wing
  • 2 篇 xu chengming

语言

  • 126 篇 英文
  • 1 篇 其他
检索条件"主题词=Few-Shot Object Detection"
127 条 记 录,以下是11-20 订阅
排序:
Intervening on few-shot object detection based on the front-door criterion
收藏 引用
NEURAL NETWORKS 2025年 185卷 107251页
作者: Zhang, Yanan Li, Jiangmeng Ji, Qirui Li, Kai Liu, Lixiang Zheng, Changwen Qiang, Wenwen Univ Chinese Acad Sci Beijing Peoples R China Chinese Acad Sci Inst Software Natl Key Lab Space Integrated Informat Syst Beijing Peoples R China
Most few-shot object detection methods aim to utilize the learned generalizable knowledge from base categories to identify instances of novel categories. The fundamental assumption of these approaches is that the mode... 详细信息
来源: 评论
Orthogonal Progressive Network for few-shot object detection
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 264卷
作者: Wang, Bingxin Yu, Dehong Xi An Jiao Tong Univ 28 Xianning West Rd Xian 710049 Shaanxi Peoples R China
few-shot object detection (FSOD) is a significant application of few-shot learning in object detection tasks. Its primary objective is to enable the model to quickly acquire the ability to detect novel categories thro... 详细信息
来源: 评论
Dynamic relevance learning for few-shot object detection
收藏 引用
SIGNAL IMAGE AND VIDEO PROCESSING 2025年 第4期19卷 1-10页
作者: Liu, Weijie Cai, Xiaojie Wang, Chong Li, Haohe Yu, Shenghao Ningbo Univ Fac Elect Engn & Comp Sci Ningbo 315000 Peoples R China
Expensive bounding-box annotations have limited the development of object detection task. Thus, it is necessary to focus on more challenging task of few-shot object detection. It requires the detector to recognize obj... 详细信息
来源: 评论
Advancing Fine-Grained few-shot object detection on Remote Sensing Images with Decoupled Self-Distillation and Progressive Prototype Calibration
收藏 引用
REMOTE SENSING 2025年 第3期17卷 495-495页
作者: Guo, Hao Liu, Yanxing Pan, Zongxu Hu, Yuxin Chinese Acad Sci Aerosp Informat Res Inst Beijing 100094 Peoples R China Chinese Acad Sci Key Lab Technol Geospatial Informat Proc & Applica Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100049 Peoples R China Key Lab Target Cognit & Applicat Technol Beijing 100190 Peoples R China
In data-scarcity scenarios, few-shot object detection (FSOD) methods exhibit a notable advantage in alleviating the over-fitting problem. Currently, research on FSOD in the field of remote sensing is advancing rapidly... 详细信息
来源: 评论
Enhanced few-shot object detection for remote sensing images based on target characteristics
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 148卷
作者: Wang, Jian Zhao, Zeya Shao, Jiang Zou, Xiaochun Zhao, Xinbo Northwestern Polytech Univ Sch Comp Sci Xian 710072 Peoples R China Beijing Inst Tracking & Commun Technol Beijing 100094 Peoples R China Northwestern Polytech Univ Sch Elect & Informat Xian 710072 Peoples R China
few-shot object detection (FSOD) in remote sensing images (RSIs) is a challenging and hot issue due to the characteristics of targets in remote sensing images such as varying sizes, complex backgrounds, target occlusi... 详细信息
来源: 评论
Learning General and Specific Embedding with Transformer for few-shot object detection
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2025年 第2期133卷 968-984页
作者: Zhang, Xu Chen, Zhe Zhang, Jing Liu, Tongliang Tao, Dacheng Univ Sydney Fac Engn Sch Comp Sci Darlington NSW 2008 Australia Trobe Univ Cisco La Trobe Ctr AI & IoT Sch Comp Engn & Math Sci Bendigo Vic 3552 Australia
few-shot object detection (FSOD) studies how to detect novel objects with few annotated examples effectively. Recently, it has been demonstrated that decent feature embeddings, including the general feature embeddings... 详细信息
来源: 评论
Multiscale Dynamic Attention and Hierarchical Spatial Aggregation for few-shot object detection
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第3期15卷 1381-1381页
作者: An, Yining Song, Chunlin Tongji Univ Coll Elect & Informat Engn Shanghai 201804 Peoples R China
few-shot object detection (FSOD) remains a critical challenge in computer vision, where the limited training data significantly hinder model performance. Existing methods suffer from poor robustness and accuracy, prim... 详细信息
来源: 评论
A few-shot object detection method for garbage via variational autoencoders and feature aggregation
收藏 引用
WASTE MANAGEMENT 2025年 200卷 114754页
作者: Xue, Shuya Song, Dian Chen, Wei Zhao, Lei Zhou, Qian Soochow Univ Sch Comp Sci & Technol Suzhou Peoples R China Soochow Univ Sch Polit Sci & Publ Adm Suzhou Peoples R China
Outdoor waste detection plays a pivotal role in environmental monitoring and waste management systems. Traditional garbage detectors rely heavily on a large amount of labelled data for training. However, these approac... 详细信息
来源: 评论
Low-light few-shot object detection via curve contrast enhancement and flow-encoder-based variational autoencoder
收藏 引用
Neural Computing and Applications 2025年 第10期37卷 7261-7278页
作者: Jiang, Zetao Jin, Xin Kang, Junjie The Key Laboratory of image and graphic intelligent processing Guilin University of Electronic Technology Guangxi Guilin541004 China Wuhan Service Department Sinopec Shared Services.LTD.Nanjing Branch Jiangsu Nanjing210018 China Co. LTD Geely Group Zhejiang Ningbo315336 China
Aiming at the problem of insufficient samples in low-light object detection in some environments, a low-light few-shot object detection method based on curve contrast enhancement and flow-encoder-based variational aut... 详细信息
来源: 评论
Text generation and multi-modal knowledge transfer for few-shot object detection
收藏 引用
PATTERN RECOGNITION 2025年 161卷
作者: Du, Yaoyang Liu, Fang Jiao, Licheng Li, Shuo Hao, Zehua Li, Pengfang Wang, Jiahao Wang, Hao Liu, Xu Minist Educ Key Lab Intelligent Percept & Image Understanding Beijing Peoples R China Int Res Ctr Intelligent Percept & Computat Beijing Peoples R China Joint Int Res Lab Intelligent Percept & Computat Beijing Peoples R China Xidian Univ Sch Artificial Intelligent Xian 710071 Shaanxi Peoples R China
The challenge of detecting novel categories with limited annotated samples for learning is referred to as few shot object detection (FSOD). Due to the scarcity of data, networks struggle to learn robust features that ... 详细信息
来源: 评论