咨询与建议

限定检索结果

文献类型

  • 84 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 128 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 127 篇 工学
    • 84 篇 计算机科学与技术...
    • 48 篇 电气工程
    • 15 篇 测绘科学与技术
    • 14 篇 软件工程
    • 13 篇 控制科学与工程
    • 10 篇 电子科学与技术(可...
    • 9 篇 信息与通信工程
    • 9 篇 环境科学与工程(可...
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 纺织科学与工程
  • 31 篇 医学
    • 31 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 27 篇 理学
    • 14 篇 地球物理学
    • 9 篇 物理学
    • 6 篇 化学
    • 3 篇 地理学
    • 3 篇 生物学
    • 2 篇 数学
    • 2 篇 统计学(可授理学、...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 128 篇 few-shot object ...
  • 24 篇 object detection
  • 16 篇 few-shot learnin...
  • 11 篇 transfer learnin...
  • 10 篇 remote sensing i...
  • 9 篇 meta-learning
  • 7 篇 contrastive lear...
  • 6 篇 task analysis
  • 6 篇 feature extracti...
  • 6 篇 detectors
  • 5 篇 deep learning
  • 5 篇 metric learning
  • 5 篇 training
  • 4 篇 data augmentatio...
  • 3 篇 transformer
  • 3 篇 proposals
  • 3 篇 feature enhancem...
  • 3 篇 prototypes
  • 3 篇 fine-tuning
  • 3 篇 meta learning

机构

  • 3 篇 northwestern pol...
  • 3 篇 univ chinese aca...
  • 3 篇 univ informat te...
  • 3 篇 chinese acad sci...
  • 3 篇 vietnam natl uni...
  • 2 篇 xidian univ sch ...
  • 2 篇 ningbo univ fac ...
  • 2 篇 beijing univ tec...
  • 2 篇 univ chinese aca...
  • 2 篇 natl engn lab cr...
  • 2 篇 beijing inst rem...
  • 2 篇 xidian univ guan...
  • 2 篇 tongji univ coll...
  • 2 篇 beihang univ sta...
  • 2 篇 northwestern pol...
  • 2 篇 fudan univ sch d...
  • 2 篇 wuhan inst techn...
  • 2 篇 nanjing univ pos...
  • 2 篇 nanjing univ sci...
  • 2 篇 beijing key lab ...

作者

  • 3 篇 wang jian
  • 3 篇 cheng gong
  • 3 篇 han junwei
  • 3 篇 zhao lei
  • 3 篇 wang chen
  • 2 篇 shi hongbo
  • 2 篇 vu anh-khoa nguy...
  • 2 篇 wang lei
  • 2 篇 zhang yanan
  • 2 篇 tao yang
  • 2 篇 nguyen khanh-duy
  • 2 篇 do thanh-toan
  • 2 篇 wang wenjian
  • 2 篇 cai youpeng
  • 2 篇 zhu songhao
  • 2 篇 le jeune pierre
  • 2 篇 tang chi-keung
  • 2 篇 liu weijie
  • 2 篇 fan qi
  • 2 篇 fu yanwei

语言

  • 127 篇 英文
  • 1 篇 其他
检索条件"主题词=Few-Shot Object Detection"
128 条 记 录,以下是41-50 订阅
排序:
few-shot object detection via Understanding Convolution and Attention  5th
Few-Shot Object Detection via Understanding Convolution and ...
收藏 引用
5th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Tong, Jiaxing Chen, Tao Wang, Qiong Yao, Yazhou Nanjing Univ Sci & Technol Nanjing 210094 Peoples R China
few-shot object detection (FSOD) aims to make the detector adapt to unseen classes with only a few training samples. Typical FSOD methods use Faster R-CNN as the basic detection framework, which utilizes convolutional... 详细信息
来源: 评论
few-shot object detection with Model Calibration  17th
Few-Shot Object Detection with Model Calibration
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: Fan, Qi Tang, Chi-Keung Tai, Yu-Wing Hong Kong Univ Sci & Technol Clear Water Bay Hong Kong Peoples R China Kuaishou Technol Beijing Peoples R China
few-shot object detection (FSOD) targets at transferring knowledge from known to unknown classes to detect objects of novel classes. However, previous works ignore the model bias problem inherent in the transfer learn... 详细信息
来源: 评论
few-shot object detection with Refined Contrastive Learning  35
Few-shot Object Detection with Refined Contrastive Learning
收藏 引用
35th IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
作者: Shangguan, Zeyu Huai, Lian Liu, Tong Jiang, Xingqun BOE Technol Grp Co Ltd AIoT CTO Beijing Peoples R China
Due to the scarcity of sampling data in reality, few-shot object detection (FSOD) has drawn more and more attention because of its ability to quickly train new detection concepts with less data. However, there are sti... 详细信息
来源: 评论
Semi-Supervised few-shot object detection via Adaptive Pseudo Labeling
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2024年 第4期34卷 2151-2165页
作者: Tang, Yingbo Cao, Zhiqiang Yang, Yuequan Liu, Jierui Yu, Junzhi Chinese Acad Sci Inst Automat State Key Lab Multimodal Artificial Intelligence Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China Yangzhou Univ Coll Informat Engn Yangzhou 225127 Peoples R China Yangzhou Univ Coll Artificial Intelligence Yangzhou 225127 Peoples R China Peking Univ Coll Engn Dept Adv Mfg & Robot BIC ESAT Beijing 100871 Peoples R China
few-shot object detection (FSOD) aims to detect novel objects with limited annotated examples. Mainstream methods suffer from the data scarcity of novel classes with insufficient intra-class variations, which makes th... 详细信息
来源: 评论
Boosting few-shot object detection with Discriminative Representation and Class Margin
收藏 引用
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 2024年 第3期20卷 1-19页
作者: Shi, Yanyan Yang, Shaowu Yang, Wenjing Shi, Dianxi Li, Xuehui Natl Univ Def Technol Coll Comp Changsha Hunan Peoples R China Natl Innovat Inst Def Technol Changsha Peoples R China
Classifying and accurately locating a visual category with few annotated training samples in computer vision has motivated the few-shot object detection technique, which exploits transfering the source-domain detectio... 详细信息
来源: 评论
ECEA: Extensible Co-Existing Attention for few-shot object detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2024年 33卷 5564-5576页
作者: Xin, Zhimeng Wu, Tianxu Chen, Shiming Zou, Yixiong Shao, Ling You, Xinge Huazhong Univ Sci & Technol Sch Cyber Sci & Engn Wuhan 430074 Peoples R China Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan 430074 Peoples R China Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430074 Peoples R China Univ Chinese Acad Sci UCAS UCAS Terminus AI Lab Beijing 100101 Peoples R China
few-shot object detection (FSOD) identifies objects from extremely few annotated samples. Most existing FSOD methods, recently, apply the two-stage learning paradigm, which transfers the knowledge learned from abundan... 详细信息
来源: 评论
Multiple knowledge embedding for few-shot object detection
收藏 引用
SIGNAL IMAGE AND VIDEO PROCESSING 2023年 第5期17卷 2231-2240页
作者: Gong, Xiaolin Cai, Youpeng Wang, Jian Tianjin Univ Sch Microelect Tianjin 300072 Peoples R China Tianjin Univ Tianjin Key Lab Imaging & Sensing Microelect Techn Tianjin 300072 Peoples R China Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China
In the problem of few-shot object detection, class prototype knowledge in previous works is not be fully refined and utilized due to lack of instances. We noticed that the application of the output features of the RoI... 详细信息
来源: 评论
SD-FSOD: Self-Distillation Paradigm via Distribution Calibration for few-shot object detection
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2024年 第7期34卷 5963-5976页
作者: Chen, Han Wang, Qi Xie, Kailin Lei, Liang Lin, Matthieu Gaetan Lv, Tian Liu, Yongjin Luo, Jiebo Guangdong Univ Technol Guangzhou 510006 Peoples R China Guizhou Univ Coll Comp Sci & Technol State Key Lab Publ Big Data Guiyang 550025 Guizhou Peoples R China Tsinghua Univ Coll Comp Sci & Technol Beijing 100084 Peoples R China Univ Rochester Dept Comp Sci Rochester NY 14627 USA
few-shot object detection (FSOD) aims to detect novel targets with only a few instances of the associated samples. Although combinations of distillation techniques and meta-learning paradigms have been acknowledged as... 详细信息
来源: 评论
Extreme R-CNN: few-shot object detection via Sample Synthesis and Knowledge Distillation
收藏 引用
SENSORS 2024年 第23期24卷 7833页
作者: Zhang, Shenyong Wang, Wenmin Wang, Zhibing Li, Honglei Li, Ruochen Zhang, Shixiong Macau Univ Sci & Technol Sch Comp Sci & Engn Macau 999078 Peoples R China Beijing Inst Technol Sch Comp Technol Zhuhai 519088 Peoples R China Chongqing Polytech Univ Elect Technol Artificial Intelligence & Big Data Coll Chongqing 401331 Peoples R China Guangdong BOHUA UHD Video Innovat Ctr Co Ltd Shenzhen 518172 Peoples R China
Traditional object detectors require extensive instance-level annotations for training. Conversely, few-shot object detectors, which are generally fine-tuned using limited data from unknown classes, tend to show biase... 详细信息
来源: 评论
Understanding Negative Proposals in Generic few-shot object detection
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2024年 第7期34卷 5818-5829页
作者: Yan, Bowei Lang, Chunbo Cheng, Gong Han, Junwei Northwestern Polytech Univ Sch Automat Xian 710129 Peoples R China
Recently, few-shot object detection (FSOD) has received considerable research attention as a strategy for reducing reliance on extensively labeled bounding boxes. However, current approaches encounter significant chal... 详细信息
来源: 评论