咨询与建议

限定检索结果

文献类型

  • 83 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 127 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 126 篇 工学
    • 83 篇 计算机科学与技术...
    • 48 篇 电气工程
    • 15 篇 测绘科学与技术
    • 14 篇 软件工程
    • 13 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 9 篇 信息与通信工程
    • 9 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 纺织科学与工程
  • 31 篇 医学
    • 31 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 28 篇 理学
    • 14 篇 地球物理学
    • 9 篇 物理学
    • 7 篇 化学
    • 3 篇 地理学
    • 3 篇 生物学
    • 2 篇 数学
    • 2 篇 统计学(可授理学、...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 127 篇 few-shot object ...
  • 23 篇 object detection
  • 16 篇 few-shot learnin...
  • 12 篇 transfer learnin...
  • 10 篇 remote sensing i...
  • 9 篇 meta-learning
  • 7 篇 contrastive lear...
  • 6 篇 task analysis
  • 6 篇 feature extracti...
  • 6 篇 detectors
  • 5 篇 deep learning
  • 5 篇 metric learning
  • 5 篇 training
  • 4 篇 data augmentatio...
  • 3 篇 transformer
  • 3 篇 proposals
  • 3 篇 feature enhancem...
  • 3 篇 prototypes
  • 3 篇 fine-tuning
  • 3 篇 meta learning

机构

  • 3 篇 northwestern pol...
  • 3 篇 univ chinese aca...
  • 3 篇 chinese acad sci...
  • 2 篇 xidian univ sch ...
  • 2 篇 ningbo univ fac ...
  • 2 篇 beijing univ tec...
  • 2 篇 univ chinese aca...
  • 2 篇 natl engn lab cr...
  • 2 篇 beijing inst rem...
  • 2 篇 xidian univ guan...
  • 2 篇 tongji univ coll...
  • 2 篇 beihang univ sta...
  • 2 篇 northwestern pol...
  • 2 篇 fudan univ sch d...
  • 2 篇 wuhan inst techn...
  • 2 篇 nanjing univ pos...
  • 2 篇 nanjing univ sci...
  • 2 篇 beijing key lab ...
  • 2 篇 univ elect sci &...
  • 2 篇 purple mt labs m...

作者

  • 3 篇 wang jian
  • 3 篇 cheng gong
  • 3 篇 han junwei
  • 3 篇 zhao lei
  • 3 篇 wang chen
  • 2 篇 shi hongbo
  • 2 篇 wang lei
  • 2 篇 zhang yanan
  • 2 篇 tao yang
  • 2 篇 wang wenjian
  • 2 篇 cai youpeng
  • 2 篇 zhu songhao
  • 2 篇 le jeune pierre
  • 2 篇 tang chi-keung
  • 2 篇 liu weijie
  • 2 篇 fan qi
  • 2 篇 fu yanwei
  • 2 篇 tan shuai
  • 2 篇 tai yu-wing
  • 2 篇 xu chengming

语言

  • 126 篇 英文
  • 1 篇 其他
检索条件"主题词=Few-Shot Object Detection"
127 条 记 录,以下是51-60 订阅
排序:
DP-DDCL: A discriminative prototype with dual decoupled contrast learning method for few-shot object detection
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2024年 297卷
作者: Guo, Yinsai Ma, Liyan Luo, Xiangfeng Xie, Shaorong Shanghai Univ Sch Comp Engn & Sci Shanghai Peoples R China
few -shot object detection (FSOD) can effectively improve object detection performance with limited training data, attracting increasing interest from researchers. Due to the limited sample size, there is often a larg... 详细信息
来源: 评论
MSO-DETR: Metric space optimization for few-shot object detection
收藏 引用
CAAI Transactions on Intelligence Technology 2024年 第6期9卷 1515-1533页
作者: Haifeng Sima Manyang Wang Lanlan Liu Yudong Zhang Junding Sun School of Computer Science and Technology Henan Polytechnic UniversityJiaozuoChina Institute of Quantitative Remote Sensing and Smart Agriculture Henan Polytechnic UniversityJiaozuoChina Faculty of Arts and Law Henan Polytechnic UniversityJiaozuoChina School of Computing and Mathematical Sciences University of LeicesterLeicesterUK
In the metric-based meta-learning detection model,the distribution of training samples in the metric space has great influence on the detection performance,and this influence is usually ignored by traditional *** addi... 详细信息
来源: 评论
RecFRCN: few-shot object detection With Recalibrated Faster R-CNN
收藏 引用
IEEE ACCESS 2023年 11卷 121109-121117页
作者: Zhang, Youyou Lu, Tongwei Wuhan Inst Technol Sch Comp Sci & Engn Wuhan 430205 Peoples R China Wuhan Inst Technol Hubei Key Lab Intelligent Robot Wuhan 430205 Peoples R China
Currently, Faster R-CNN serves as the fundamental detection framework in the majority of few-shot object detection algorithms. However, due to limited samples per class, the Faster R-CNN's classification branch fa... 详细信息
来源: 评论
CLFM: few-shot object detection via Low-Resource Contrastive Learning and Fisher Matrix Updating for Overcoming Catastrophic Forgetting
收藏 引用
IEEE ACCESS 2022年 10卷 115307-115321页
作者: Wang, Meng Wang, Qiang Liu, Haipeng Kunming Univ Sci & Technol Fac Informat Engn & Automat Kunming Yunnan Peoples R China
few-shot object detection (FSOD) aims to efficiently detect novel instances by model transferring using a few novel-class samples after the base-class samples are pre-trained. However, catastrophic forgetting occurs w... 详细信息
来源: 评论
Efficient few-shot object detection via Knowledge Inheritance
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2023年 32卷 321-334页
作者: Yang, Ze Zhang, Chi Li, Ruibo Xu, Yi Lin, Guosheng Nanyang Technol Univ NTU Sch Comp Sci & Engn Singapore 639798 Singapore OPPO US Res Ctr Inno Peak Technol Inc Palo Alto CA 94303 USA
few-shot object detection (FSOD), which aims at learning a generic detector that can adapt to unseen tasks with scarce training samples, has witnessed consistent improvement recently. However, most existing methods ig... 详细信息
来源: 评论
Support-Query Mutual Promotion and Classification Correction Network for few-shot object detection
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2024年 31卷 201-205页
作者: Xu, Jinbo Wang, Yong He, Xiaoyu Zou, Yiqun Cent South Univ Sch Automat Changsha 410083 Peoples R China
Recently, finetuning-based methods have shown great performance in few-shot object detection. These methods employ pure convolutional structures for feature extraction, and then finetune the last layers of the base de... 详细信息
来源: 评论
SMDC-Net: Saliency-Guided Multihead Distribution Calibration Network for few-shot object detection on Remote Sensing Images
收藏 引用
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 2024年 21卷 1页
作者: Wu, Jiayi Qin, Chuan Feng, Guorui Shanghai Univ Sch Commun & Informat Engn Shanghai 200444 Peoples R China Univ Shanghai Sci & Technol Sch Opt Elect & Comp Engn Shanghai 200093 Peoples R China
object detection on remote sensing images (RSIs) is a critical component of RSI processing techniques. Nonetheless, as the complexity of the model structure increases, more training data is required to prevent a sever... 详细信息
来源: 评论
SAPT: Saliency Augmentation and Unsupervised Pre-trained Model Fusion for few-shot object detection
收藏 引用
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY 2024年 第11期96卷 747-762页
作者: Liao, Yujun Wu, Yan Mo, Yujian He, Yufei Hu, Yinghao Zhao, Junqiao Tongji Univ Coll Elect & Informat Engn Shanghai 201804 Peoples R China Tongji Univ Inst Intelligent Vehicle Shanghai 201804 Peoples R China
object detection algorithms require a large amount of annotated data for training and optimization, which can be time-consuming, expensive, and limit model robustness and generalization. The natural world has a divers... 详细信息
来源: 评论
A Neuroinspired Contrast Mechanism enables few-shot object detection
收藏 引用
PATTERN RECOGNITION 2024年 156卷
作者: Yang, Lingxiao Chen, Dapeng Chen, Yifei Peng, Wei Xie, Xiaohua Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou Peoples R China Guangdong Prov Key Lab Informat Secur Technol Guangzhou Peoples R China Minist Educ Key Lab Machine Intelligence & Adv Comp Guangzhou Peoples R China Huawei Technol Shenzhen Peoples R China
Deep learning-based object detectors often demand abundant annotated data for training. However, in practice, only limited training data are available, making few-shot object detection (FSOD) an attractive research to... 详细信息
来源: 评论
Bi-path Combination YOLO for Real-time few-shot object detection
收藏 引用
PATTERN RECOGNITION LETTERS 2023年 165卷 91-97页
作者: Xia, Ruiyang Li, Guoquan Huang, Zhengwen Meng, Hongying Pang, Yu Chongqing Univ Posts & Telecommun Sch Commun & Informat Engn Chongqing 400065 Peoples R China BUL CQUPT Innovat Insitute Grp Artificial Intelligence & Syst Optimizat Chongqing 400065 Peoples R China Brunel Univ London Dept Elect & Elect Engn UB8-3PH London England Chongqing Univ Posts & Telecommun Key Lab Photoelect Informat Sensing & Transmiss Te Chongqing 400065 Peoples R China
few-shot object detection (FSOD) has more attention in recent years as the quantitative limitation of in-stances during the model training. Previous works based on meta learning and transfer learning focus on the dete... 详细信息
来源: 评论