咨询与建议

限定检索结果

文献类型

  • 83 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 127 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 126 篇 工学
    • 83 篇 计算机科学与技术...
    • 48 篇 电气工程
    • 15 篇 测绘科学与技术
    • 14 篇 软件工程
    • 13 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 9 篇 信息与通信工程
    • 9 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 纺织科学与工程
  • 31 篇 医学
    • 31 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 28 篇 理学
    • 14 篇 地球物理学
    • 9 篇 物理学
    • 7 篇 化学
    • 3 篇 地理学
    • 3 篇 生物学
    • 2 篇 数学
    • 2 篇 统计学(可授理学、...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 127 篇 few-shot object ...
  • 23 篇 object detection
  • 16 篇 few-shot learnin...
  • 12 篇 transfer learnin...
  • 10 篇 remote sensing i...
  • 9 篇 meta-learning
  • 7 篇 contrastive lear...
  • 6 篇 task analysis
  • 6 篇 feature extracti...
  • 6 篇 detectors
  • 5 篇 deep learning
  • 5 篇 metric learning
  • 5 篇 training
  • 4 篇 data augmentatio...
  • 3 篇 transformer
  • 3 篇 proposals
  • 3 篇 feature enhancem...
  • 3 篇 prototypes
  • 3 篇 fine-tuning
  • 3 篇 meta learning

机构

  • 3 篇 northwestern pol...
  • 3 篇 univ chinese aca...
  • 3 篇 chinese acad sci...
  • 2 篇 xidian univ sch ...
  • 2 篇 ningbo univ fac ...
  • 2 篇 beijing univ tec...
  • 2 篇 univ chinese aca...
  • 2 篇 natl engn lab cr...
  • 2 篇 beijing inst rem...
  • 2 篇 xidian univ guan...
  • 2 篇 tongji univ coll...
  • 2 篇 beihang univ sta...
  • 2 篇 northwestern pol...
  • 2 篇 fudan univ sch d...
  • 2 篇 wuhan inst techn...
  • 2 篇 nanjing univ pos...
  • 2 篇 nanjing univ sci...
  • 2 篇 beijing key lab ...
  • 2 篇 univ elect sci &...
  • 2 篇 purple mt labs m...

作者

  • 3 篇 wang jian
  • 3 篇 cheng gong
  • 3 篇 han junwei
  • 3 篇 zhao lei
  • 3 篇 wang chen
  • 2 篇 shi hongbo
  • 2 篇 wang lei
  • 2 篇 zhang yanan
  • 2 篇 tao yang
  • 2 篇 wang wenjian
  • 2 篇 cai youpeng
  • 2 篇 zhu songhao
  • 2 篇 le jeune pierre
  • 2 篇 tang chi-keung
  • 2 篇 liu weijie
  • 2 篇 fan qi
  • 2 篇 fu yanwei
  • 2 篇 tan shuai
  • 2 篇 tai yu-wing
  • 2 篇 xu chengming

语言

  • 126 篇 英文
  • 1 篇 其他
检索条件"主题词=Few-Shot Object Detection"
127 条 记 录,以下是81-90 订阅
排序:
HOSENet: Higher-Order Semantic Enhancement for few-shot object detection  3rd
HOSENet: Higher-Order Semantic Enhancement for Few-Shot Obje...
收藏 引用
3rd Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Zhang, Lingli Chen, Ke-Jia Zhou, Xiaomeng Nanjing Univ Posts & Telecommun Sch Comp Sci Nanjing Peoples R China Nanjing Univ Posts & Telecommun Jiangsu Key Lab Big Data Secur & Intelligent Proc Nanjing Peoples R China Nanjing Univ Posts & Telecommun Sch Commun & Informat Engn Nanjing Peoples R China
few-shot object detection is to detect objects of novel categories from only a few annotated examples and has recently attracted attention. Existing methods focus on designing new training strategies on a widely used ... 详细信息
来源: 评论
A Closer Look at few-shot object detection  6th
A Closer Look at Few-Shot Object Detection
收藏 引用
6th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Liu, Yuhao Dong, Le He, Tengyang Univ Elect Sci & Technol China Dept Comp Sci & Technol Chengdu Peoples R China
few-shot object detection, which aims to detect unseen classes in data-scarce scenarios, remains a challenging task. Most existing works adopt Faster RCNN as the basic framework and employ fine-tuning paradigm to tack... 详细信息
来源: 评论
Transformer-Based few-shot object detection with Enhanced Fine-Tuning Stability
Transformer-Based Few-Shot Object Detection with Enhanced Fi...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Chen, Zuyu Li, Ya-Li Wang, Shengjin Tsinghua Univ Dept Elect Engn Beijing Peoples R China Beijing Natl Res Ctr Informat Sci & Technol BNRis Beijing Peoples R China
few-shot object detection (FSOD) aims at detecting unseen classes with limited annotated novel examples. while the fine-tuning paradigm has been proven effective for FSOD, most existing approaches are based on Faster ... 详细信息
来源: 评论
ADVANCING CONTROLLABLE DIFFUSION MODEL FOR few-shot object detection IN OPTICAL REMOTE SENSING IMAGERY
ADVANCING CONTROLLABLE DIFFUSION MODEL FOR FEW-SHOT OBJECT D...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Zhang, Tong Zhuang, Yin Zhang, Xinyi Wang, Guanqun Chen, He Bi, Fukun Beijing Inst Technol Natl Key Lab Sci & Technol Space Born Intelligent Beijing 100081 Peoples R China Peking Univ Beijing 100871 Peoples R China North China Univ Technol Beijing 100144 Peoples R China
few-shot object detection (FSOD) from optical remote sensing imagery has to detect rare objects given only a few annotated bounding boxes. The limited training data is hard to represent the data distribution of realis... 详细信息
来源: 评论
Proposal-level Correction Guided by CLIP for few-shot object detection
Proposal-level Correction Guided by CLIP for Few-shot Object...
收藏 引用
2024 Conference on Visual Communications and Image Processing
作者: Wang, Ruihang Zhao, Taijin Mei, Hefei Qiu, Heqian Wang, Lanxiao Li, Hongliang Univ Elect Sci & Technol China Chengdu Peoples R China
few-shot object detection aims at detecting previously unseen objects given only a few annotated samples. Most existing approaches treat the model obtained from the base training stage with abundant data as a containe... 详细信息
来源: 评论
Delve into Cosine: few-shot object detection via Adaptive Norm-cutting Scale
Delve into Cosine: Few-shot Object Detection via Adaptive No...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Zhang, Yanan Jin, Yifan Wang, Rui Liu, Lixiang Univ Chinese Acad Sci Chinese Acad Sci Inst Software Beijing 100190 Peoples R China
In this paper, we provide an analysis of the existing two-stage representation learning framework for the few-shot object detection from the perspective of normalization in the latent space, which is achieved by delvi... 详细信息
来源: 评论
MULTI-SCALE CONTEXT-AWARE R-CNN FOR few-shot object detection IN REMOTE SENSING IMAGES
MULTI-SCALE CONTEXT-AWARE R-CNN FOR FEW-SHOT OBJECT DETECTIO...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Su, Haozheng You, Yanan Meng, Gang Beijing Univ Posts & Telecommun Sch Artificial Intelligence Beijing Peoples R China Beijing Inst Remote Sensing Informat Beijing Peoples R China
In the field of remote sensing image object detection, the popular CNN-based methods need a large-scale and diverse dataset that is costly, and have limited generalization abilities for new categories. The few-shot ob... 详细信息
来源: 评论
Hierarchical few-shot object detection: Problem, Benchmark and Method  22
Hierarchical Few-Shot Object Detection: Problem, Benchmark a...
收藏 引用
30th ACM International Conference on Multimedia (MM)
作者: Zhang, Lu Wang, Yang Zhou, Jiaogen Zhang, Chenbo Zhang, Yinglu Guan, Jihong Bian, Yatao Zhou, Shuigeng Fudan Univ Shanghai Peoples R China Tongji Univ Shanghai Peoples R China Huaiyin Normal Univ Sch Urban & Environm Sci Huaian Peoples R China Tencent AI Lab Shenzhen Peoples R China
few-shot object detection (FSOD) is to detect objects with a few examples. However, existing FSOD methods do not consider hierarchical fine-grained category structures of objects that exist widely in real life. For ex... 详细信息
来源: 评论
Self-supervised Prototype Conditional few-shot object detection  21st
Self-supervised Prototype Conditional Few-Shot Object Detect...
收藏 引用
21st International Conference on Image Analysis and Processing (ICIAP)
作者: Kobayashi, Daisuke Toshiba Co Ltd Corp Res & Dev Ctr Kawasaki Kanagawa Japan
Traditional deep learning-based object detection methods require a large amount of annotation for training, and creating such a dataset is expensive. few-shot object detection which detects a new category of objects w... 详细信息
来源: 评论
Prototype Relation Embedding and Contrastive Learning for Improved few-shot object detection in Sonar Images  11
Prototype Relation Embedding and Contrastive Learning for Im...
收藏 引用
11th Joint International Information Technology and Artificial Intelligence Conference, ITAIC 2023
作者: Zhou, Xin Zhou, Zihan Tian, Kun School of Information Science and Technology Dalian Maritime University Liaoning Dalian China
While recent advancements have significantly elevated the performance of object detection in sonar images, the performance of object detectors experiences a steep decline when trained with a limited number of samples.... 详细信息
来源: 评论