咨询与建议

限定检索结果

文献类型

  • 33 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 49 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 48 篇 工学
    • 36 篇 计算机科学与技术...
    • 24 篇 电气工程
    • 9 篇 软件工程
    • 8 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 2 篇 机械工程
    • 2 篇 土木工程
    • 2 篇 网络空间安全
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 9 篇 医学
    • 9 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 7 篇 理学
    • 3 篇 地球物理学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 数学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 49 篇 few-shot image c...
  • 10 篇 metric learning
  • 8 篇 training
  • 7 篇 task analysis
  • 7 篇 feature extracti...
  • 5 篇 deep learning
  • 4 篇 semantics
  • 4 篇 measurement
  • 4 篇 meta-learning
  • 3 篇 transformer
  • 3 篇 image classifica...
  • 3 篇 attention mechan...
  • 2 篇 variational infe...
  • 2 篇 representation l...
  • 2 篇 transfer learnin...
  • 2 篇 prototypes
  • 2 篇 metalearning
  • 2 篇 remote sensing s...
  • 2 篇 euclidean distan...
  • 2 篇 few shot learnin...

机构

  • 4 篇 univ chinese aca...
  • 3 篇 beijing univ pos...
  • 3 篇 lanzhou univ tec...
  • 2 篇 soochow univ sch...
  • 2 篇 china univ petr ...
  • 2 篇 tianjin univ col...
  • 2 篇 chinese acad sci...
  • 2 篇 ucl dept stat sc...
  • 1 篇 qingdao chrystar...
  • 1 篇 yangzhou univ sc...
  • 1 篇 univ warsaw krak...
  • 1 篇 gree elect appli...
  • 1 篇 city univ london...
  • 1 篇 school of scienc...
  • 1 篇 zhejiang univers...
  • 1 篇 northwestern pol...
  • 1 篇 department of co...
  • 1 篇 china univ petr ...
  • 1 篇 key lab pattern ...
  • 1 篇 nanjing normal u...

作者

  • 3 篇 ma zhanyu
  • 3 篇 li xiaoxu
  • 2 篇 zhou li
  • 2 篇 fu wen
  • 2 篇 zhang min
  • 2 篇 sun zhe
  • 2 篇 zhang qieshi
  • 2 篇 zheng wang
  • 2 篇 wang donglin
  • 2 篇 cao weijia
  • 2 篇 xing lei
  • 2 篇 cheng jun
  • 2 篇 wu fuxiang
  • 2 篇 guo pengfei
  • 2 篇 zhu rui
  • 2 篇 hao fusheng
  • 2 篇 xue jing-hao
  • 2 篇 liu weifeng
  • 2 篇 liu baodi
  • 2 篇 ma yuteng

语言

  • 49 篇 英文
检索条件"主题词=Few-shot Image Classification"
49 条 记 录,以下是11-20 订阅
排序:
Semantic-Aware Feature Aggregation for few-shot image classification
收藏 引用
NEURAL PROCESSING LETTERS 2023年 第5期55卷 6595-6609页
作者: Hao, Fusheng Wu, Fuxiang He, Fengxiang Zhang, Qieshi Song, Chengqun Cheng, Jun Shenzhen Inst Adv Technol Chinese Acad Sci Guangdong Hong Kong Macao Joint Lab Human Machine Shenzhen Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China JD Explore Acad JD com Beijing Peoples R China
Generating features from the most relevant image regions has shown great potential in solving the challenging few-shot image classification problem. Most of existing methods aggregate image regions weighted with atten... 详细信息
来源: 评论
Unsupervised few-shot image classification via one-vs-all contrastive learning
收藏 引用
APPLIED INTELLIGENCE 2023年 第7期53卷 7833-7847页
作者: Zheng, Zijun Feng, Xiang Yu, Huiqun Li, Xiuquan Gao, Mengqi East China Univ Sci & Technol Dept Comp Sci & Engn Shanghai 200237 Peoples R China Shanghai Engn Res Ctr Smart Energy Shanghai 200237 Peoples R China Chinese Acad Sci & Technol Dev Beijing 100038 Peoples R China
Human beings innately possess the ability to perceive novel concepts from only a few samples. As a setting to imitate the learned ability of human beings, few-shot image classification (FSIC) has recently aroused a re... 详细信息
来源: 评论
Query-Specific Embedding Co-Adaptation Improve few-shot image classification
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2023年 30卷 783-787页
作者: Fu, Wen Zhou, Li Chen, Jie Chinese Acad Sci Inst Microelect Beijing 100029 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
few-shot image classification (FSIC) aims to identify unseen categories by a limited number of instances. Recently, some metric-based methods have attempted to generate more discriminative task-specific embeddings by ... 详细信息
来源: 评论
Semantic-Aligned Attention With Refining Feature Embedding for few-shot image classification
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2022年 第12期23卷 25458-25468页
作者: Xu, Xianda Xu, Xing Shen, Fumin Li, Yujie Univ Elect Sci & Technol China Ctr Future Multimedia Chengdu 611731 Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China Carnegie Mellon Univ Sch Comp Sci Pittsburgh PA 15213 USA Yangzhou Univ Sch Informat Engn Yangzhou 225002 Jiangsu Peoples R China
Autonomous driving relies on trusty visual recognition of surrounding objects. few-shot image classification is used in autonomous driving to help recognize objects that are rarely seen. Successful embedding and metri... 详细信息
来源: 评论
Bidirectional Matching Prototypical Network for few-shot image classification
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2022年 29卷 982-986页
作者: Fu, Wen Zhou, Li Chen, Jie Chinese Acad Sci Inst Microelect Beijing 100029 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
few-shot image classification (FSIC) is the task of generalizing a model to unknown categories by learning from a small number of labeled samples of some given categories. Recently, metric-based approaches have receiv... 详细信息
来源: 评论
Multi-Level Correlation Network For few-shot image classification
Multi-Level Correlation Network For Few-Shot Image Classific...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Dang, Yunkai Sun, Meijun Zhang, Min Chen, Zhengyu Zhang, Xinliang Wang, Zheng Wang, Donglin Tianjin Univ Coll Intelligence & Comp Tianjin Peoples R China Westlake Univ AI Div Sch Engn Hangzhou Peoples R China
few-shot image classification(FSIC) aims to recognize novel classes given few labeled images from base classes. Recent works have achieved promising classification performance, especially for metric-learning methods, ... 详细信息
来源: 评论
FeatEMD: Better Patch Sampling and Distance Metric for few-shot image classification  1
收藏 引用
32nd International Conference on Artificial Neural Networks (ICANN)
作者: Deng, Shisheng Liao, Dongping Gao, Xitong Zhao, Juanjuan Ye, Kejiang Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen 518000 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China Univ Macau Macau 999078 Peoples R China
few-shot image classification (FSIC) studies the problem of classifying images when given only a few training samples, which presents a challenge for deep learning models to generalize well on unseen image categories.... 详细信息
来源: 评论
Research on Transductive few-shot image classification Methods Based on Metric Learning  7
Research on Transductive Few-Shot Image Classification Metho...
收藏 引用
7th International Conference on Communication and Information Systems, ICCIS 2023
作者: Li, Shuai Jin, Jingxuan Li, De Wang, Peng College of Engineering Yanbian University Yanji China
In fields such as medical image analysis, autonomous driving, and military reconnaissance, obtaining a large number of shots is difficult or costly, resulting in a limited amount of data. Therefore, researching and ad... 详细信息
来源: 评论
Low-Dimensional Feature Representation with Hybrid Attention for few-shot image classification  29
Low-Dimensional Feature Representation with Hybrid Attention...
收藏 引用
29th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2023
作者: Yao, Xin-Wei Yuan, Zhi-Heng Fang, Yu-Li He, Chuan Zhang, Yu-Chen Li, Qiang Zhejiang University of Technology College of Computer Science and Technology Hangzhou China Zhejiang University of Technology Taizhou Research Institute Taizhou China Zhejiang University of Technology Institute for Frontier and Interdisciplinary Sciences Hangzhou China
Learning effective image representation and constructing a suitable metric space are two main challenges in few-shot image classification. Existing methods normally consider the joint characteristic distribution of th... 详细信息
来源: 评论
KLSANet: Key local semantic alignment Network for few-shot image classification
收藏 引用
NEURAL NETWORKS 2024年 178卷 106456页
作者: Sun, Zhe Zheng, Wang Guo, Pengfei Yanshan Univ Dept Informat Sci & Engn Hebei St Qinhuangdao Hebei Peoples R China
few-shot image classification involves recognizing new classes with a limited number of labeled samples. Current local descriptor-based methods, while leveraging consistent low-level features across visible and invisi... 详细信息
来源: 评论