版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
The use of the discrete wavelet transform (DWT) for the JPEG2000 image compression standard has sparked interest in the design of fast, efficient hardware implementations of the perfect reconstruction filter bank used for computing the DWT. The accuracy and efficiency with which the filter coefficients are quantized in a multiplierless implementation impacts the image compression and hardware performance of the filter bank. A high precision representation ensures good compression performance, but at the cost of increased hardware resources and processing time. Conversely, lower precision in the filter coefficients results in smaller, faster hardware, but at the cost of poor compression performance. In addition to filter coefficient quantization, the filter bank structure also determines critical hardware properties such as throughput and power consumption.
This thesis first investigates filter coefficient quantization strategies and filter bank structures for the hardware implementation of the biorthogonal 9/7 wavelet filters in a traditional convolution-based filter bank. Two new filter bank propertiesâ â no-distortion-mseâ and â deviation-at-dcâ â are identified as critical to compression performance, and two new â compensatingâ filter coefficient quantization methods are developed to minimize degradation of these properties. The results indicate that the best performance is obtained by using a cascade form for the filters with coefficients quantized using the â compensating zerosâ technique. The hardware properties of this implementation are then improved by developing a cascade polyphase structure that increases throughput and decreases power consumption.
Next, this thesis investigates implementations of the lifting structureâ an orthogonal structure that is more robust to coefficient quantization than the traditional convolution-based filter bank in computing the DWT. Novel, optimal filter coefficient quantization techniques ar
电话和邮箱必须正确填写,我们会与您联系确认。
版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
暂无评论