咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 1 篇 学位论文
  • 1 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 理学
    • 11 篇 数学
    • 1 篇 物理学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 3 篇 工学
    • 2 篇 电气工程
    • 1 篇 控制科学与工程
    • 1 篇 软件工程

主题

  • 14 篇 first-order algo...
  • 3 篇 worst-case perfo...
  • 3 篇 smooth convex mi...
  • 3 篇 convex optimizat...
  • 2 篇 convergence boun...
  • 2 篇 primal-dual algo...
  • 1 篇 saddle-point pro...
  • 1 篇 low-rank optimiz...
  • 1 篇 imaging
  • 1 篇 inverse problems
  • 1 篇 convex minimizat...
  • 1 篇 proximal gradien...
  • 1 篇 large scale port...
  • 1 篇 sparse generaliz...
  • 1 篇 sparse optimizat...
  • 1 篇 linesearch
  • 1 篇 fast gradient me...
  • 1 篇 nesterov's accel...
  • 1 篇 optimized gradie...
  • 1 篇 convergence

机构

  • 3 篇 univ michigan de...
  • 1 篇 princeton univ d...
  • 1 篇 univ michigan an...
  • 1 篇 inria le chesnay
  • 1 篇 mit operat res c...
  • 1 篇 ucl england
  • 1 篇 south china agr ...
  • 1 篇 uclouvain core l...
  • 1 篇 univ southern ca...
  • 1 篇 aix marseille un...
  • 1 篇 shanghai jiao to...
  • 1 篇 uclouvain icteam...
  • 1 篇 university of ca...
  • 1 篇 graz univ techno...
  • 1 篇 univ southern ca...
  • 1 篇 univ bath bath b...
  • 1 篇 columbia univ de...
  • 1 篇 univ birmingham ...
  • 1 篇 department of in...
  • 1 篇 mit sloan sch ma...

作者

  • 4 篇 kim donghwan
  • 4 篇 fessler jeffrey ...
  • 1 篇 razaviyayn meisa...
  • 1 篇 iyengar garud
  • 1 篇 glineur francois
  • 1 篇 jiang xin
  • 1 篇 pock thomas
  • 1 篇 kereta zeljko
  • 1 篇 emiya valentin
  • 1 篇 abad carlos
  • 1 篇 xiang gao
  • 1 篇 shu-zhong zhang
  • 1 篇 ehrhardt matthia...
  • 1 篇 liang jingwei
  • 1 篇 van parys bart p...
  • 1 篇 hendrickx julien...
  • 1 篇 gribonval remi
  • 1 篇 malitsky yura
  • 1 篇 tang junqi
  • 1 篇 stellato bartolo...

语言

  • 13 篇 英文
检索条件"主题词=First-order algorithms"
14 条 记 录,以下是11-20 订阅
排序:
On the Convergence Analysis of the Optimized Gradient Method
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 2017年 第1期172卷 187-205页
作者: Kim, Donghwan Fessler, Jeffrey A. Univ Michigan Ann Arbor MI 48109 USA
This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for thi... 详细信息
来源: 评论
Optimized first-order methods for smooth convex minimization
收藏 引用
MATHEMATICAL PROGRAMMING 2016年 第1-2期159卷 81-107页
作者: Kim, Donghwan Fessler, Jeffrey A. Univ Michigan Dept Elect Engn & Comp Sci Ann Arbor MI 48109 USA
We introduce new optimized first-order methods for smooth unconstrained convex minimization. Drori and Teboulle (Math Program 145(1-2):451-482, 2014. doi: 10.1007/s10107-013-0653-0"10.1007/s10107-013-0653-0"... 详细信息
来源: 评论
Portfolio Selection with Multiple Spectral Risk Constraints
收藏 引用
SIAM JOURNAL ON FINANCIAL MATHEMATICS 2015年 第1期6卷 467-486页
作者: Abad, Carlos Iyengar, Garud Columbia Univ Dept Ind Engn & Operat Res IEOR New York NY 10027 USA
We propose an iterative gradient-based algorithm to efficiently solve the portfolio selection problem with multiple spectral risk constraints. Since the conditional value-at-risk (CVaR) is a special case of the spectr... 详细信息
来源: 评论
A DYNAMIC SCREENING PRINCIPLE FOR THE LASSO  22
A DYNAMIC SCREENING PRINCIPLE FOR THE LASSO
收藏 引用
22nd European Signal Processing Conference (EUSIPCO)
作者: Bonnefoy, Antoine Emiya, Valentin Ralaivola, Liva Gribonval, Remi Aix Marseille Univ CNRS UMR 7279 LIF Marseille France Inria Le Chesnay France
The Lasso is an optimization problem devoted to finding a sparse representation of some signal with respect to a pre-defined dictionary. An original and computationally-efficient method is proposed here to solve this ... 详细信息
来源: 评论