咨询与建议

限定检索结果

文献类型

  • 82 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 85 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 理学
    • 78 篇 数学
    • 6 篇 物理学
    • 1 篇 统计学(可授理学、...
  • 14 篇 工学
    • 10 篇 计算机科学与技术...
    • 5 篇 力学(可授工学、理...
    • 3 篇 软件工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程

主题

  • 85 篇 fractal interpol...
  • 31 篇 fractals
  • 25 篇 iterated functio...
  • 9 篇 box dimension
  • 8 篇 positivity
  • 8 篇 iterated functio...
  • 7 篇 fractal interpol...
  • 7 篇 interpolation
  • 6 篇 hausdorff dimens...
  • 5 篇 fractal dimensio...
  • 4 篇 monotonicity
  • 4 篇 rational cubic i...
  • 4 篇 rational cubic f...
  • 4 篇 blending functio...
  • 3 篇 rakotch contract...
  • 3 篇 convexity
  • 3 篇 alpha-fractal in...
  • 2 篇 least squares ap...
  • 2 篇 random data sets
  • 2 篇 28a80

机构

  • 6 篇 vellore inst tec...
  • 6 篇 indian inst tech...
  • 4 篇 indian inst tech...
  • 4 篇 i shou univ dept...
  • 4 篇 univ zaragoza ct...
  • 4 篇 indian inst tech...
  • 4 篇 indian inst tech...
  • 3 篇 univ zaragoza de...
  • 3 篇 univ zaragoza de...
  • 3 篇 srm inst sci & t...
  • 2 篇 indian inst tech...
  • 2 篇 univ zaragoza de...
  • 2 篇 univ zaragoza fa...
  • 2 篇 univ zaragoza de...
  • 2 篇 zhejiang univ de...
  • 2 篇 indian inst tech...
  • 2 篇 univ thessaly de...
  • 2 篇 univ zaragoza es...
  • 1 篇 politecn torino ...
  • 1 篇 yonsei univ yons...

作者

  • 21 篇 navascues m. a.
  • 18 篇 chand a. k. b.
  • 6 篇 gowrisankar a.
  • 5 篇 katiyar s. k.
  • 5 篇 luor dah-chin
  • 5 篇 vijender n.
  • 4 篇 verma manuj
  • 4 篇 priyadarshi amit
  • 4 篇 prasad m. guru p...
  • 4 篇 akhtar md. nasim
  • 4 篇 bouboulis p.
  • 4 篇 priyanka t. m. c...
  • 4 篇 navascues maria ...
  • 4 篇 sebastian m. v.
  • 3 篇 agathiyan a.
  • 3 篇 navascués ma
  • 2 篇 tyada k. r.
  • 2 篇 haseyama m
  • 2 篇 sebastián mv
  • 2 篇 massopust p. r.

语言

  • 73 篇 英文
  • 12 篇 其他
检索条件"主题词=Fractal interpolation functions"
85 条 记 录,以下是41-50 订阅
排序:
More General fractal functions on the Sphere
收藏 引用
MEDITERRANEAN JOURNAL OF MATHEMATICS 2019年 第6期16卷 134-134页
作者: Akhtar, Md. Nasim Guru Prem Prasad, M. Navascues, M. A. Indian Inst Technol Guwahati Dept Math Gauhati 781039 Assam India Univ Zaragoza Dept Matemat Aplicada Zaragoza Spain
In this article, a family of continuous functions on the unit sphere S subset of R-3 generalizing the spherical harmonics, is considered. Using fractal methodology, the fractal version of this family of continuous fun... 详细信息
来源: 评论
Dependence of friction coefficient on the resolution of asperities in metallic rough surfaces under cyclic loading
收藏 引用
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 2017年 108卷 85-97页
作者: Panagouli, Olympia K. Mastrodimou, Konstantina Univ Thessaly Dept Civil Engn Lab Struct Anal & Design Volos 38334 Volos Greece
In this paper the friction mechanism that is developed between metallic rough interfaces with irregularities of different scales, submitted to cyclic loading is studied. The main purpose of the paper is to investigate... 详细信息
来源: 评论
Box dimension of α-fractal function with variable scaling factors in subintervals
收藏 引用
CHAOS SOLITONS & fractalS 2017年 103卷 440-449页
作者: Akhtar, Md Nasim Prasad, M. Guru Prem Navascures, M. A. IIT Guwahati Dept Math Gauhati 781039 India Univ Zaragoza Dept Matemat Aplicada Zaragoza Spain
The box dimension of the graph of non-affine alpha-fractal interpolation function f(alpha) with variable scaling factors is estimated in the interval [0, 1]. Due to the non- affinity of f(alpha), the behavior of the g... 详细信息
来源: 评论
fractal interpolation functions ON POST CRITICALLY FINITE SELF-SIMILAR SETS
收藏 引用
fractalS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 2010年 第1期18卷 119-125页
作者: Ruan, Huo-Jun Zhejiang Univ Dept Math Hangzhou 310027 Peoples R China Cornell Univ Dept Math Ithaca NY 14853 USA
In this paper, we introduce fractal interpolation functions (FIFs) and linear FIFs on a post critically finite (p.c.f. for short) self-similar set K. We present a sufficient condition such that linear FIFs have finite... 详细信息
来源: 评论
Convexity/Concavity and Stability Aspects of Rational Cubic fractal interpolation Surfaces
收藏 引用
Computational Mathematics and Modeling 2017年 第3期28卷 407-430页
作者: Chand, A.K.B. Vijender, N. Navascués, M.A. Indian Institute of Technology Madras Chennai India Vellore Institute of Technology University Chennai India Centro Politécnico Superior de Ingenieros Universidad de Zaragoza Zaragoza Spain
fractal interpolation is more general than the classical piecewise interpolation due to the presence of the scaling factors that describe smooth or non-smooth shape of a fractal curve/surface. We develop the rational ... 详细信息
来源: 评论
PARTIALLY BLENDED CONSTRAINED RATIONAL CUBIC TRIGONOMETRIC fractal interpolation SURFACES
收藏 引用
fractalS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 2016年 第3期24卷 1650027-1650027页
作者: Chand, A. K. B. Tyada, K. R. Indian Inst Technol Dept Math Madras 600036 Tamil Nadu India
fractal interpolation is an advance technique for visualization of scientific shaped data. In this paper, we present a new family of partially blended rational cubic trigonometric fractal interpolation surfaces (RCTFI... 详细信息
来源: 评论
BOX DIMENSIONS OF α-fractal functions
收藏 引用
fractalS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 2016年 第3期24卷 1650037-1650037页
作者: Akhtar, Md. Nasim Prasad, M. Guru Prem Navascues, M. A. Indian Inst Technol Guwahati Dept Math Gauhati 781039 Assam India Univ Zaragoza Dept Mate Aplicada E-50009 Zaragoza Spain
The box dimension of the graph of non-affine, continuous, nowhere differentiable function fa which is a fractal analogue of a continuous function f corresponding to a certain iterated function system (IFS), is investi... 详细信息
来源: 评论
A NEW CLASS OF fractal interpolation SURFACES BASED ON FUNCTIONAL VALUES
收藏 引用
fractalS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 2016年 第1期24卷 1650007-1650007页
作者: Chand, A. K. B. Vijender, N. Indian Inst Technol Dept Math Madras 600036 Tamil Nadu India VIT Univ Chennai Dept Math Madras 600127 Tamil Nadu India
fractal interpolation is a modern technique for fitting of smooth/non-smooth data. Based on only functional values, we develop two types of C-1-rational fractal interpolation surfaces (FISs) on a rectangular grid in t... 详细信息
来源: 评论
Positive blending Hermite rational cubic spline fractal interpolation surfaces
收藏 引用
CALCOLO 2015年 第1期52卷 1-24页
作者: Chand, A. K. B. Vijender, N. Indian Inst Technol Madras Dept Math Madras 600036 Tamil Nadu India
fractal interpolation provides an efficient way to describe data that have smooth and non-smooth structures. Based on the theory of fractal interpolation functions (FIFs), the Hermite rational cubic spline FIFs (fract... 详细信息
来源: 评论
A Monotonic Rational fractal interpolation Surface and Its Analytical Properties  1
收藏 引用
2nd International Conference on Mathematics and Computing (ICMC)
作者: Chand, A. K. B. Vijender, N. Indian Inst Technol Madras Dept Math Madras 600036 Tamil Nadu India VIT Univ Dept Math Madras 600127 Tamil Nadu India
A l(1)-continuous rational cubic fractal interpolation function was introduced and its monotonicity aspect was investigated in [Adv. Difference Eq. (30) 2014]. Using this univariate interpolant and a blending techniqu... 详细信息
来源: 评论