咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 数学
    • 1 篇 统计学(可授理学、...
  • 1 篇 工学
    • 1 篇 机械工程
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 1 篇 anomaly detectio...
  • 1 篇 self-supervised ...
  • 1 篇 full convolution...
  • 1 篇 hyperspectral im...

机构

  • 1 篇 deqing data co. ...
  • 1 篇 faculty of elect...
  • 1 篇 school of mathem...
  • 1 篇 business school ...

作者

  • 1 篇 zhao rui
  • 1 篇 li minyi
  • 1 篇 yu yize
  • 1 篇 wang jingwen

语言

  • 1 篇 其他
检索条件"主题词=Full Convolutional Autoencoder"
1 条 记 录,以下是1-10 订阅
排序:
Utilization of a full convolutional autoencoder for the Task of Anomaly Detection in Hyperspectral Imagery
Utilization of a Full Convolutional Autoencoder for the Task...
收藏 引用
2024 International Conference on Machine Learning and Intelligent Computing, MLIC 2024
作者: Wang, Jingwen Yu, Yize Zhao, Rui Li, Minyi School of Mathematics and Statistics Ningbo University 315211 China Business School Ningbo University 315211 China Faculty of Electrical Engineering and Computer Science Ningbo University 315211 China Deqing Data Co. Ltd. 313200 China
The advancement of artificial intelligence has significantly improved the capability to capture background features in hyperspectral images (HSI), thereby demonstrating commendable performance in the domain of hypersp... 详细信息
来源: 评论