咨询与建议

限定检索结果

文献类型

  • 2 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 3 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 3 篇 fusion-in-decode...
  • 1 篇 kilt
  • 1 篇 comment retrieva...
  • 1 篇 knowledge retrie...
  • 1 篇 code summarizati...
  • 1 篇 knowledge-based ...
  • 1 篇 retrieval augmen...
  • 1 篇 heterogeneous gr...

机构

  • 1 篇 wuhan univ sch c...
  • 1 篇 wright state uni...
  • 1 篇 cohere austria
  • 1 篇 bytedance inc cu...
  • 1 篇 univ notre dame ...
  • 1 篇 hubei univ key l...
  • 1 篇 univ massachuset...
  • 1 篇 google res mount...

作者

  • 1 篇 hofstatter sebas...
  • 1 篇 liu zifeng
  • 1 篇 chen jiecao
  • 1 篇 ju mingxuan
  • 1 篇 yo lan
  • 1 篇 chen lingwei
  • 1 篇 ye yanfang
  • 1 篇 raman karthik
  • 1 篇 liu jin
  • 1 篇 zamani hamed
  • 1 篇 chen weipeng
  • 1 篇 hou shifu
  • 1 篇 huang xu

语言

  • 3 篇 英文
检索条件"主题词=Fusion-in-Decoder"
3 条 记 录,以下是1-10 订阅
排序:
RK-VQA: Rational knowledge-aware fusion-in-decoder for knowledge-based visual question answering
收藏 引用
INFORMATION fusion 2025年 118卷
作者: Chen, Weipeng Huang, Xu Liu, Zifeng Liu, Jin Yo, Lan Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China Hubei Univ Key Lab Intelligent Sensing Syst & Secur Wuhan 430062 Peoples R China
Knowledge-based Visual Question Answering (KB-VQA) expands traditional VQA by utilizing world knowledge from external sources when the image alone is insufficient to infer a correct answer. Existing methods face chall... 详细信息
来源: 评论
Leveraging Comment Retrieval for Code Summarization  1
收藏 引用
45th European Conference on Information Retrieval (ECIR)
作者: Hou, Shifu Chen, Lingwei Ju, Mingxuan Ye, Yanfang Univ Notre Dame Notre Dame IN 46556 USA Wright State Univ Dayton OH 45435 USA
Open-source code often suffers from mismatched or missing comments, leading to difficult code comprehension, and burdening software development and maintenance. In this paper, we design a novel code summarization mode... 详细信息
来源: 评论
FiD-Light: Efficient and Effective Retrieval-Augmented Text Generation  23
FiD-Light: Efficient and Effective Retrieval-Augmented Text ...
收藏 引用
46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
作者: Hofstatter, Sebastian Chen, Jiecao Raman, Karthik Zamani, Hamed Cohere Vienna Austria Bytedance Inc Culver City CA USA Google Res Mountain View CA USA Univ Massachusetts Amherst MA 01003 USA
Retrieval-augmented generation models offer many benefits over standalone language models: besides a textual answer to a given query they provide provenance items retrieved from an updateable knowledge base. However, ... 详细信息
来源: 评论