咨询与建议

限定检索结果

文献类型

  • 42 篇 期刊文献
  • 15 篇 会议

馆藏范围

  • 57 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 工学
    • 40 篇 计算机科学与技术...
    • 8 篇 电气工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 生物工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 信息与通信工程
    • 2 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 控制科学与工程
  • 26 篇 理学
    • 24 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 4 篇 数学
    • 3 篇 化学
  • 14 篇 医学
    • 8 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 7 篇 农学
    • 1 篇 作物学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 公共管理

主题

  • 57 篇 gene expression ...
  • 7 篇 clustering
  • 7 篇 biclustering
  • 5 篇 data mining
  • 5 篇 bioinformatics
  • 2 篇 co-expression ne...
  • 2 篇 nosql database
  • 2 篇 data clustering
  • 2 篇 random subspace ...
  • 2 篇 pattern discover...
  • 2 篇 multiple classif...
  • 2 篇 binary hierarchi...
  • 2 篇 clinical researc...
  • 2 篇 pattern recognit...
  • 2 篇 pairwise diversi...
  • 2 篇 negative correla...
  • 2 篇 microarray data
  • 2 篇 clinical trial m...
  • 2 篇 multivariate fea...
  • 2 篇 gene expression ...

机构

  • 8 篇 univ sydney sch ...
  • 4 篇 city univ hong k...
  • 2 篇 city univ hong k...
  • 2 篇 univ colorado de...
  • 2 篇 univ malaga dept...
  • 1 篇 institute for in...
  • 1 篇 research fellow ...
  • 1 篇 nanyang technol ...
  • 1 篇 griffith univ sc...
  • 1 篇 deptt. of comp s...
  • 1 篇 univ basque coun...
  • 1 篇 hong kong polyte...
  • 1 篇 univ colombo sch...
  • 1 篇 tezpur univ dept...
  • 1 篇 hasso plattner i...
  • 1 篇 univ calif san f...
  • 1 篇 griffith univ sc...
  • 1 篇 univ oviedo gijo...
  • 1 篇 univ ljubljana f...
  • 1 篇 department of co...

作者

  • 5 篇 yan hong
  • 3 篇 liew awc
  • 3 篇 yan h
  • 3 篇 chira camelia
  • 2 篇 mahanta priyaksh...
  • 2 篇 chan keith c.c.
  • 2 篇 yang ms
  • 2 篇 chan keith c. c.
  • 2 篇 navas-delgado is...
  • 2 篇 hatami nima
  • 2 篇 hurtado sandro
  • 2 篇 ma patrick c. h.
  • 2 篇 ma patrick c.h.
  • 2 篇 ahmed hasin afza...
  • 2 篇 liew alan wee-ch...
  • 2 篇 zhao hongya
  • 2 篇 garcia-nieto jos...
  • 1 篇 kiraly andras
  • 1 篇 kalita jugal kum...
  • 1 篇 shaeiri zahra

语言

  • 54 篇 英文
  • 3 篇 其他
检索条件"主题词=Gene Expression Data Analysis"
57 条 记 录,以下是1-10 订阅
排序:
gene expression data analysis of human lymphoma using support vector machines and output coding ensembles
收藏 引用
ARTIFICIAL INTELLIGENCE IN MEDICINE 2002年 第3期26卷 281-304页
作者: Valentini, G Univ Genoa Dipartimento Informat & Sci Informazione I-16146 Genoa Italy INFM I-16146 Genoa Italy
The large amount of data generated by DNA microarrays was originally analysed using unsupervised methods, such as clustering or self-organizing maps. Recently supervised methods such as decision trees, dot-product sup... 详细信息
来源: 评论
Exploring ant-based algorithms for gene expression data analysis
收藏 引用
ARTIFICIAL INTELLIGENCE IN MEDICINE 2009年 第2期47卷 105-119页
作者: He, Yulan Hui, Siu Cheung Open Univ Knowledge Media Inst Milton Keynes MK7 6AA Bucks England Nanyang Technol Univ Sch Comp Engn Singapore 639798 Singapore
Objective: Recently, much research has been proposed using nature inspired algorithms to perform complex machine learning tasks. Ant colony optimization (ACO) is one such algorithm based on swarm intelligence and is d... 详细信息
来源: 评论
Incremental genetic K-means algorithm and its application in gene expression data analysis
收藏 引用
BMC BIOINFORMATICS 2004年 第1期5卷 172-172页
作者: Lu, Y Lu, SY Fotouhi, F Deng, YP Brown, SJ Univ So Mississippi Dept Biol Sci Hattiesburg MS 39406 USA Wayne State Univ Dept Comp Sci Detroit MI 48202 USA Kansas State Univ Div Biol Manhattan KS 66506 USA
Background: In recent years, clustering algorithms have been effectively applied in molecular biology for gene expression data analysis. With the help of clustering algorithms such as K-means, hierarchical clustering,... 详细信息
来源: 评论
Cluster analysis of gene expression data based on self-splitting and merging competitive learning
收藏 引用
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 2004年 第1期8卷 5-15页
作者: Wu, SH Liew, AWC Yan, H Yang, MS City Univ Hong Kong Dept Comp Engn & Informat Technol Kowloon Hong Kong Peoples R China Univ Sydney Sch Elect & Informat Engn Sydney NSW 2006 Australia City Univ Hong Kong Dept Biol & Chem Kowloon Hong Kong Peoples R China
Cluster analysis of gene expression data from a cDNA microarray is useful for identifying biologically relevant groups of genes. However, finding the natural clusters in the data and estimating the correct number of c... 详细信息
来源: 评论
AnovArray: a set of SAS macros for the analysis of variance of gene expression data
收藏 引用
BMC BIOINFORMATICS 2005年 第1期6卷 1-6页
作者: Hennequet-Antier, C Chiapello, H Piot, K Degrelle, S Hue, I Renard, JP Rodolphe, F Robin, S INRA Unite Math Informat & Genome F-78352 Jouy En Josas France INRA INA PG F-75231 Paris France INRA Unite Biol Dev & Reprod F-78352 Jouy En Josas France
Background: analysis of variance is a powerful approach to identify differentially expressed genes in a complex experimental design for microarray and macroarray data. The advantage of the anova model is the possibili... 详细信息
来源: 评论
Application of Transcriptional gene Modules to analysis of Caenorhabditis elegans' gene expression data
收藏 引用
G3-geneS GENOMES geneTICS 2020年 第10期10卷 3623-3638页
作者: Cary, Michael Podshivalova, Katie Kenyon, Cynthia Univ Calif San Francisco Program Biomed Informat San Francisco CA 94158 USA Univ Calif San Francisco Dept Biochem & Biophys San Francisco CA 94158 USA Cal Life Sci LLC 1170 Vet Blvd San Francisco CA 94080 USA
Identification of co-expressed sets of genes (gene modules) is used widely for grouping functionally related genes during transcriptomic data analysis. An organism-wide atlas of high-quality gene modules would provide... 详细信息
来源: 评论
Pattern recognition techniques for the emerging field of bioinformatics: A review
收藏 引用
PATTERN RECOGNITION 2005年 第11期38卷 2055-2073页
作者: Liew, AWC Yan, H Yang, MS Chinese Univ Hong Kong Dept Comp Sci & Engn Shatin Hong Kong Peoples R China City Univ Hong Kong Dept Comp Engn & Informat Technol Kowloon Hong Kong Peoples R China Univ Sydney Sch Elect & Informat Engn Sydney NSW 2006 Australia City Univ Hong Kong Dept Chem & Biol Kowloon Hong Kong Peoples R China
The emerging field of bioinformatics has recently created much interest in the computer science and engineering communities. With the wealth of sequence data in many public online databases and the huge amount of data... 详细信息
来源: 评论
Estimating Genome-Wide gene Networks Using Nonparametric Bayesian Network Models on Massively Parallel Computers
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2011年 第3期8卷 683-697页
作者: Tamada, Yoshinori Imoto, Seiya Araki, Hiromitsu Nagasaki, Masao Print, Cristin Charnock-Jones, D. Stephen Miyano, Satoru Univ Tokyo Ctr Human Genome Inst Med Sci Lab DNA Informat AnalMinato Ku Tokyo 1088639 Japan RIKEN Computat Sci Res Program Wako Saitama 3510198 Japan Univ Auckland Dept Mol Med & Pathol Sch Med Sci Fac Med & Hlth Sci Auckland 1 New Zealand Univ Cambridge Rosie Hosp Dept Obstet & Gynaecol Cambridge CB2 0SW England Biomed Res Ctr Natl Inst Hlth Res Cambridge England
We present a novel algorithm to estimate genome-wide gene networks consisting of more than 20,000 genes from gene expression data using nonparametric Bayesian networks. Due to the difficulty of learning Bayesian netwo... 详细信息
来源: 评论
genetic diagnosis of cancer by fuzzy-rough gene selection and the complementary hierarchical fuzzy classifier
收藏 引用
BIO-MEDICAL MATERIALS AND ENGINEERING 2011年 第1期21卷 37-52页
作者: Shaeiri, Zahra Ghaderi, Reza Babol Univ Technol Dept Elect & Comp Engn Babol Sar Iran
gene expression data have extremely high dimensionality with respect to traditional classifiers which causes not to be used efficiently. In this paper a Fuzzy Rough gene Selection and Complementary Hierarchical Fuzzy ... 详细信息
来源: 评论
gene clustering for time-series microarray with production outputs
收藏 引用
SOFT COMPUTING 2016年 第11期20卷 4301-4312页
作者: Chira, Camelia Sedano, Javier Villar, Jose R. Camara, Monica Prieto, Carlos Tech Univ Cluj Napoca Baritiu 26-28 Cluj Napoca 400027 Romania Inst Tecnol Castilla & Leon Burgos Spain Univ Oviedo Gijon Spain Univ Salamanca Bioinformat Serv Nucleus Oviedo Spain
The identification of coexpressed genes from microarray data is a challenging problem in bioinformatics and computational biology. The objective of this study is to obtain knowledge about the most important genes and ... 详细信息
来源: 评论