咨询与建议

限定检索结果

文献类型

  • 761 篇 期刊文献
  • 166 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 931 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 843 篇 工学
    • 310 篇 计算机科学与技术...
    • 202 篇 土木工程
    • 128 篇 材料科学与工程(可...
    • 100 篇 水利工程
    • 85 篇 电气工程
    • 78 篇 环境科学与工程(可...
    • 61 篇 建筑学
    • 60 篇 机械工程
    • 49 篇 控制科学与工程
    • 49 篇 化学工程与技术
    • 47 篇 石油与天然气工程
    • 46 篇 动力工程及工程热...
    • 42 篇 地质资源与地质工...
    • 35 篇 力学(可授工学、理...
    • 34 篇 信息与通信工程
    • 33 篇 软件工程
    • 23 篇 冶金工程
    • 21 篇 仪器科学与技术
    • 20 篇 交通运输工程
    • 14 篇 矿业工程
  • 209 篇 理学
    • 55 篇 地球物理学
    • 45 篇 化学
    • 41 篇 生物学
    • 39 篇 物理学
    • 20 篇 数学
    • 20 篇 地质学
  • 66 篇 管理学
    • 65 篇 管理科学与工程(可...
  • 29 篇 医学
    • 14 篇 药学(可授医学、理...
  • 22 篇 农学
    • 13 篇 作物学
  • 6 篇 经济学
  • 1 篇 法学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 931 篇 gene expression ...
  • 61 篇 machine learning
  • 55 篇 artificial neura...
  • 46 篇 compressive stre...
  • 35 篇 genetic programm...
  • 29 篇 artificial neura...
  • 26 篇 artificial intel...
  • 24 篇 support vector m...
  • 23 篇 sensitivity anal...
  • 21 篇 evolutionary alg...
  • 20 篇 prediction
  • 20 篇 symbolic regress...
  • 18 篇 genetic algorith...
  • 17 篇 modeling
  • 16 篇 neural networks
  • 15 篇 evolutionary alg...
  • 14 篇 shear strength
  • 14 篇 soft computing
  • 14 篇 evolutionary com...
  • 13 篇 prediction model

机构

  • 12 篇 comsats univ isl...
  • 11 篇 prince sattam bi...
  • 10 篇 iran univ sci & ...
  • 10 篇 urmia univ water...
  • 9 篇 western caspian ...
  • 9 篇 lanzhou univ dep...
  • 8 篇 univ tabriz fac ...
  • 8 篇 univ engn & tech...
  • 7 篇 china univ geosc...
  • 7 篇 sichuan univ sch...
  • 6 篇 nit agartala dep...
  • 6 篇 king faisal univ...
  • 6 篇 gaziantep univ d...
  • 6 篇 comsats univ isl...
  • 6 篇 huazhong univ sc...
  • 6 篇 gdynia maritime ...
  • 6 篇 razi univ dept c...
  • 6 篇 shahid beheshti ...
  • 6 篇 wuhan univ sci &...
  • 5 篇 sichuan univ col...

作者

  • 32 篇 javed muhammad f...
  • 15 篇 shiri jalal
  • 13 篇 jedrzejowicz pio...
  • 13 篇 nazari ali
  • 13 篇 jedrzejowicz joa...
  • 13 篇 deng song
  • 11 篇 kisi ozgur
  • 11 篇 faradonbeh rooho...
  • 10 篇 mehdizadeh saeid
  • 8 篇 sattar ahmed m. ...
  • 8 篇 xue xinhua
  • 8 篇 gandomi amir hos...
  • 8 篇 gandomi amir h.
  • 8 篇 li kangshun
  • 8 篇 gao liang
  • 8 篇 yang lechan
  • 7 篇 nawaz muhammad n...
  • 7 篇 khan kaffayatull...
  • 7 篇 murad yasmin
  • 7 篇 armaghani danial...

语言

  • 865 篇 英文
  • 59 篇 其他
  • 7 篇 中文
检索条件"主题词=Gene Expression Programming"
931 条 记 录,以下是871-880 订阅
排序:
Assessing the competency of a semi-parametric expert system in the realms of response characterization uncertainty in premixed methanol dual fuel diesel combustion strategies: In critique to RSM
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2021年 185卷 115516-115516页
作者: Kakati, Dipankar Banerjee, Rahul NIT Agartala Dept Mech Engn Agartala 799046 India
Engine response characterization endeavours of the day are faced with the contradictory obligations of developing an accurate engine response map in face of an ever-expanding parametric space and decreasing test-bench... 详细信息
来源: 评论
SOM-and-GEP-Based Model for the Prediction of Foamed Bitumen Characteristics
收藏 引用
JOURNAL OF TRANSPORTATION ENGINEERING PART B-PAVEMENTS 2021年 第2期147卷
作者: Eleyedath, Abhary Kar, Siksha Swaroopa Swamy, Aravind Krishna Indian Inst Technol Delhi Dept Civil Engn Delhi 110016 India Council Sci & Ind Res Cent Rd Res Inst Pavement Engn Area Delhi 110016 India
Due to significant interaction between properties of bitumen and test conditions, prediction of foamed bitumen characteristics [i.e., half-life (HL) and expansion ratio (ER)] is a challenging exercise. This work prese... 详细信息
来源: 评论
Machine learning based prediction models for spilt tensile strength of fiber reinforced recycled aggregate concrete
收藏 引用
CASE STUDIES IN CONSTRUCTION MATERIALS 2024年 20卷
作者: Alarfaj, Mohammed Qureshi, Hisham Jahangir Shahab, Muhammad Zubair Javed, Muhammad Faisal Arifuzzaman, Md Gamil, Yaser King Faisal Univ Coll Engn Dept Elect Engn Al Hufuf 31982 Saudi Arabia King Faisal Univ Coll Engn Dept Civil & Environm Engn Alahsa 31982 Saudi Arabia COMSATS Univ Islamabad Dept Civil Engn Abbottabad Campus Abbottabad 22020 Pakistan Ghulam Ishaq Khan Inst Engn Sci & Technol Dept Civil Engn Topi 23640 Pakistan Monash Univ Malaysia Sch Engn Dept Civil Engn Jalan Lagoon Selatan Bandar Sunway 47500 Selangor Malaysia
The demand for concrete production has led to a significant annual requirement for raw materials, resulting in a substantial amount of waste concrete. In response, recycled aggregate concrete has emerged as a promisin... 详细信息
来源: 评论
Metaheuristic artificial intelligence (AI): Mechanical properties of electronic waste concrete
收藏 引用
CONSTRUCTION AND BUILDING MATERIALS 2023年 第1期394卷
作者: Khan, Mohsin Ali Usman, Mian Muhammad Alsharari, Fahad Yosri, Ahmed M. Aslam, Fahid Alzara, Majed Nabil, Marwa CECOS Univ IT & Emerging Sci Dept Civil Engn Peshawar 25000 Pakistan Jouf Univ Civil Engn Dept Sakaka 72388 Jouf Saudi Arabia Delta Univ Sci & Technol Fac Engn Civil Engn Dept Belkas Egypt Prince Sattam Bin Abdulaziz Univ Coll Engn Al Kharj Dept Civil Engn Al Kharj Saudi Arabia Zagazig Univ Fac Engn Dept Struct Engn Zagazig Egypt
The appropriate disposal of electronic waste (E-waste) is becoming a serious concern on a global scale. The purpose of present work is to establish a link between the mix design factors and mechanical strength using t... 详细信息
来源: 评论
Predicting the Ultimate Axial Capacity of Uniaxially Loaded CFST Columns Using Multiphysics Artificial Intelligence
收藏 引用
MATERIALS 2022年 第1期15卷 39页
作者: Khan, Sangeen Ali Khan, Mohsin Zafar, Adeel Javed, Muhammad Faisal Aslam, Fahid Musarat, Muhammad Ali Vatin, Nikolai Ivanovich Natl Univ Sci & Technol NUST Mil Coll Engn MCE Dept Struct Engn Islamabad 44000 Pakistan CECOS Univ IT & Emerging Sci Civil Engn Dept Peshawar 25000 Pakistan COMSATS Univ Islamabad Dept Civil Engn Abbottabad Campus Abbottabad 22060 Pakistan Prince Sattam bin Abdulaziz Univ Coll Engn Al Kharj Dept Civil Engn Al Kharj 11942 Saudi Arabia Univ Teknol PETRONAS Dept Civil & Environm Engn Bandar Seri Iskandar 32610 Malaysia Peter Great St Petersburg Polytech Univ St Petersburg 195291 Russia
The object of this research is concrete-filled steel tubes (CFST). The article aimed to develop a prediction Multiphysics model for the circular CFST column by using the Artificial Neural Network (ANN), the Adaptive N... 详细信息
来源: 评论
Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
收藏 引用
CONSTRUCTION AND BUILDING MATERIALS 2021年 308卷 125021-125021页
作者: Song, Hongwei Ahmad, Ayaz Farooq, Furqan Ostrowski, Krzysztof Adam Maslak, Mariusz Czarnecki, Slawomir Aslam, Fahid Dalian Minzu Univ Coll Civil Engn Dalian 116600 Peoples R China COMSATS Univ Islamabad Dept Civil Engn Abbottabad Campus Abbottabad 22060 Pakistan Cracow Univ Technol Fac Civil Engn 24 Warszawska Str PL-31155 Krakow Poland Wroclaw Univ Sci & Technol Dept Bldg Engn PL-50370 Wroclaw Poland Prince Sattam bin Abdulaziz Univ Coll Engn Al Kharj Dept Civil Engn Al Kharj 11942 Saudi Arabia
The cementitious composites have different properties in the changing environment. Thus, knowing their mechanical properties is very important for safety reasons. The most important in the case of concrete is the Comp... 详细信息
来源: 评论
Flexural strength prediction of concrete beams reinforced with hybrid FRP and steel bars based on machine learning
收藏 引用
STRUCTURES 2024年 65卷
作者: Zhang, Tao Gao, Danying Xue, Chengcheng Zhengzhou Univ Sch Water Conservancy Engn 100 Sci Rd Zhengzhou 450001 Henan Peoples R China Zhengzhou Univ Sch Civil Engn 100 Sci Rd Zhengzhou 450001 Henan Peoples R China
In the past decade, hybrid fiber-reinforced polymer (FRP) and steel reinforced concrete (hybrid FRP-steel RC) beams have attracted significant interest due to their relatively superior flexural behavior compared with ... 详细信息
来源: 评论
Study Using Machine Learning Approach for Novel Prediction Model of Liquid Limit
收藏 引用
BUILDINGS 2022年 第10期12卷 1551页
作者: Nawaz, Muhammad Naqeeb Qamar, Sana Ullah Alshameri, Badee Karam, Steve Codur, Merve Kayaci Nawaz, Muhammad Muneeb Riaz, Malik Sarmad Azab, Marc Natl Univ Sci & Technol NUST Inst Civil Engn Islamabad 44000 Pakistan Amer Univ Middle East Coll Engn & Technol Egaila 54200 Kuwait Erzurum Tech Univ Fac Engn & Architecture Dept Ind Engn TR-25050 Erzurum Turkey Natl Univ Technol NUTECH Civil Engn Dept Islamabad 44000 Pakistan
The liquid limit (LL) is considered the most fundamental parameter in soil mechanics for the design and analysis of geotechnical systems. According to the literature, the LL is governed by different particle sizes suc... 详细信息
来源: 评论
An evolutionary computing approach for reducing bias in the dynamic modulus predictive models of hot mix asphalt
收藏 引用
CONSTRUCTION AND BUILDING MATERIALS 2022年 第0期350卷
作者: Eleyedath, Abhary Swamy, Aravind Krishna IIT Delhi Dept Civil Engn New Delhi 110016 India
Various published literature has indicated significant bias issues with dynamic modulus (|E*|) predictive models for the hot mix asphalt. This study proposes gene expression programming (GEP) based approach to reduce ... 详细信息
来源: 评论
Discharge and flow field simulation of open-channel sewer junction using artificial intelligence methods
收藏 引用
SCIENTIA IRANICA 2019年 第1期26卷 178-187页
作者: Zaji, A. H. Bonakdari, H. Razi Univ Dept Civil Engn Kermanshah Iran
One of the most important parameters in designing sewer structures is the ability to accurately simulate their discharge and velocity field. Among the various sewer receiving inflow methods, open-channel junctions are... 详细信息
来源: 评论