Recently Golay complementary sets were shown to exist in the subsets of second-order cosets of a q-ary generalization of the first-order Reed-Muller (RM) code. We show that mutually orthogonal Golay complementary sets...
详细信息
Recently Golay complementary sets were shown to exist in the subsets of second-order cosets of a q-ary generalization of the first-order Reed-Muller (RM) code. We show that mutually orthogonal Golay complementary sets can also be directly constructed from second-order cosets of a q-ary generalization of the first-order RM code. This identification can be used to construct zero correlation zone (ZCZ) sequences directly and it also enables the construction of ZCZ sequences with special subsets.
New quadratic bent functions in polynomial form are constructed in this paper. The constructions give new boolean bent, generalizedboolean bent and p-ary bent functions. Based on Z(4)-valued quadratic forms, a simple...
详细信息
New quadratic bent functions in polynomial form are constructed in this paper. The constructions give new boolean bent, generalizedboolean bent and p-ary bent functions. Based on Z(4)-valued quadratic forms, a simple method provides several new constructions of generalizedboolean bent functions. From these generalizedboolean bent functions a method is presented to transform them into boolean bent and semi-bent functions. Moreover, many new p-ary bent functions can also be obtained by applying similar methods.
By investigating the properties that the offsets should satisfy, this letter presents a brief proof of general QAM Golay complementary sequences (GCSs) in Cases I-III constructions. Our aim is to provide a brief, clea...
详细信息
By investigating the properties that the offsets should satisfy, this letter presents a brief proof of general QAM Golay complementary sequences (GCSs) in Cases I-III constructions. Our aim is to provide a brief, clear, and intelligible derivation so that it is easy for the reader to understand the known Cases I-III constructions of general QAM GCSs.
The two-dimensional (2-D) Z-complementary array pair (ZCAP) can be viewed as an extension of the well-known one-dimensional (1-D) Z-complementary pair (ZCP). To date, most constructions of 2-D ZCAPs are indirect and b...
详细信息
The two-dimensional (2-D) Z-complementary array pair (ZCAP) can be viewed as an extension of the well-known one-dimensional (1-D) Z-complementary pair (ZCP). To date, most constructions of 2-D ZCAPs are indirect and based on existing 1-D sequences or 2-D arrays. In this letter, a new direct construction of 2-D ZCAPs with flexible array sizes based on 2-D generalized boolean functions is proposed. Compared with the state-of-the-art method, the proposed 2-D ZCAPs have larger 2-D zero correlation zone (ZCZ) sizes and more flexible array sizes. Furthermore, the peak-to-average power ratio of column sequences of the proposed 2-D ZCAPs is analyzed and upper bounded by 2.
Based on the non-standard generalized boolean functions (GBFs) over Z(4), we propose a new method to convert those functions into the 16-QAM Go lay complementary sequences (CSs). The resultant 16-QAM Go lay CSs have t...
详细信息
Based on the non-standard generalized boolean functions (GBFs) over Z(4), we propose a new method to convert those functions into the 16-QAM Go lay complementary sequences (CSs). The resultant 16-QAM Go lay CSs have the upper bound of peak-to-mean envelope power ratio (PMEPR) as low as 2. In addition, we obtain multiple 16-QAM Go lay CSs for a given quadrature phase shift keying (QPSK) Go lay CS.
Mutually orthogonal complementary sets (MOCSs) have received significant research attention in recent years due to their wide applications in communications and radar. Existing MOCSs which are constructed based on gen...
详细信息
Mutually orthogonal complementary sets (MOCSs) have received significant research attention in recent years due to their wide applications in communications and radar. Existing MOCSs which are constructed based on generalized boolean functions (GBFs) mostly have lengths of power-of-two. How to construct MOCSs with non-power-of-two lengths whilst having large set sizes is a largely open problem. With the aid of GBFs, in this paper, we present new constructions of such MOCSs and show that the maximal achievable set size is 1/2 of the flock size of an MOCS.
This letter discusses the construction of 16-quadratic-amplitude modulation (QAM) Golay complementary sequences of length N = 2(m). Based on the standard binary Golay-Davis-Jedwab (GDJ) complementary sequences (CSs), ...
详细信息
This letter discusses the construction of 16-quadratic-amplitude modulation (QAM) Golay complementary sequences of length N = 2(m). Based on the standard binary Golay-Davis-Jedwab (GDJ) complementary sequences (CSs), we present a method to convert the aforementioned GDJ CSs into the required sequences. The resultant sequences have the upper bounds 3.6N, 2.8N, 2N, 1.2N, and 0.4N of peak envelope powers, respectively, depending on the choices of their offsets. The numbers of the proposed sequences, corresponding to five upper bounds referred to above, are (24m - 16)(m!/2)(2m+1), 128(m - 1)(m!/2)(2m+1), (176m - 160)(m!/2)(2m+1), 128(m - 1)(m!/2)(2m+1), and (24m - 16)(m!/2)(2m+1). Our sequences can be potentially applied to the QAM systems whose input signals are binary signals.
Based on the description Q-type-2 of quadrature amplitude modulation (QAM) constellation and standard Golay-Davis-Jedwab (GDJ) quaternary complementary sequences (CSs), this paper presents a new family of QAM Golay co...
详细信息
ISBN:
(纸本)9781509037100
Based on the description Q-type-2 of quadrature amplitude modulation (QAM) constellation and standard Golay-Davis-Jedwab (GDJ) quaternary complementary sequences (CSs), this paper presents a new family of QAM Golay complementary sequences (GCSs), and determines their family size. The proposed QAM GCSs includes the known QAM GCSs from Cases I-III constructions as a special case. It is worthy of mentioning that the family size of new sequences is fairly larger than the one of the known sequences so that the code rate of the code consisting of new sequences is improved, which therefrom results in the increase of number of sub-carriers in OFDM communication systems employing the resultant QAM GCSs. More clearly, in a 64-QAM OFDM communication system whose signals are encoded by QAM GCSs, the number of subcarriers in this system is at most 16 when the known QAM GCSs from Cases I-III constructions are employed. However, such number can be increased up to 32 when the proposed QAM GCSs are used. Finally, it should be pointed out that the peak envelope power (PEP) upper bounds, educed from the usage of both new and known QAM GCSs in an OFDM communication system, are the same.
In this paper, we present a new family of cross Z-complementary pairs (CZCPs) based on generalized boolean functions and two roots of unity. Our key idea is to consider an arbitrary partition of the set {1, 2, center ...
详细信息
ISBN:
(纸本)9781665421607;9781665421591
In this paper, we present a new family of cross Z-complementary pairs (CZCPs) based on generalized boolean functions and two roots of unity. Our key idea is to consider an arbitrary partition of the set {1, 2, center dot center dot center dot, n} with two subsets corresponding to two given roots of unity for which two truncated sequences of new alphabet size determined by the two roots of unity are obtained. We show that these two truncated sequences form a new q-ary CZCP with flexible sequence length and large zero-correlation zone width. Furthermore, we derive an enumeration formula by considering the Stirling number of the second kind for the partitions and show that the number of constructed CZCPs increases significantly compared to the existing works.
Quadrature amplitude modulation (QAM) Golay complementary sequences (GCSs) are widely applied to communications, in particular, QAM GCSs can efficiently control peak envelope power (PEP) of transmitted signals in an o...
详细信息
ISBN:
(纸本)9781728121840
Quadrature amplitude modulation (QAM) Golay complementary sequences (GCSs) are widely applied to communications, in particular, QAM GCSs can efficiently control peak envelope power (PEP) of transmitted signals in an orthogonal frequency division multiplexing (OFDM) communication system. In this paper, a new family of 16-QAM GCSs is presented, and the resultant sequences have the same PEP upper bounds as the known 16-QAM GCSs. It should be noted that new sequences have the larger family size than the known sequences, which results in the increase of the relevant code rate. Hence, the proposed sequences are good candidates for the applications of OFDM communication systems.
暂无评论