咨询与建议

限定检索结果

文献类型

  • 15 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 22 篇 工学
    • 12 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 3 篇 仪器科学与技术
    • 2 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 测绘科学与技术
    • 1 篇 航空宇航科学与技...
  • 6 篇 理学
    • 2 篇 物理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 5 篇 医学
    • 5 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 军事学
    • 1 篇 军队指挥学

主题

  • 23 篇 generalized hebb...
  • 9 篇 principal compon...
  • 4 篇 neural network
  • 2 篇 flir imagery
  • 2 篇 ann
  • 2 篇 kernel methods
  • 2 篇 online kernel al...
  • 2 篇 bp
  • 2 篇 hmm
  • 2 篇 machine learning
  • 2 篇 removing hidden ...
  • 2 篇 fpga
  • 2 篇 artificial neura...
  • 2 篇 reconfigurable c...
  • 2 篇 eigenvector
  • 1 篇 image texture
  • 1 篇 collaborative fi...
  • 1 篇 aircraft configu...
  • 1 篇 ordinal data
  • 1 篇 compressed sensi...

机构

  • 3 篇 natl ilan univ d...
  • 3 篇 natl taiwan norm...
  • 1 篇 univ fed rio de ...
  • 1 篇 aerosp corp chan...
  • 1 篇 i shou univ dept...
  • 1 篇 natl taiwan univ...
  • 1 篇 software school ...
  • 1 篇 univ wisconsin d...
  • 1 篇 opole univ techn...
  • 1 篇 lappeenranta uni...
  • 1 篇 natl chiao tung ...
  • 1 篇 texas a&m univ q...
  • 1 篇 pohang univ sci ...
  • 1 篇 res lab amsrd ar...
  • 1 篇 texas instrument...
  • 1 篇 moscow mv lomono...
  • 1 篇 georgia inst tec...
  • 1 篇 univ fed rio de ...
  • 1 篇 fed ctr technol ...
  • 1 篇 xiamen univ soft...

作者

  • 3 篇 hwang wen-jyi
  • 3 篇 lin shiow-jyu
  • 2 篇 chan al
  • 2 篇 lee wei-hao
  • 2 篇 diniz paulo s. r...
  • 2 篇 souza filho joao...
  • 2 篇 nasrabadi nm
  • 2 篇 der sz
  • 1 篇 liou cheng-yuan
  • 1 篇 jun cai
  • 1 篇 oja e
  • 1 篇 mansouri majdi
  • 1 篇 changle zhou
  • 1 篇 katz a
  • 1 篇 park seonho
  • 1 篇 van hentenryck p...
  • 1 篇 polezhaeva elena
  • 1 篇 thrift p
  • 1 篇 ma yl
  • 1 篇 cheng wei-chen

语言

  • 21 篇 英文
  • 2 篇 其他
检索条件"主题词=Generalized Hebbian Algorithm"
23 条 记 录,以下是11-20 订阅
排序:
Incremental Methods in Collaborative Filtering for Ordinal Data
收藏 引用
4th International Conference on Pattern Recognition and Machine Intelligence (PReMI)
作者: Polezhaeva, Elena Moscow MV Lomonosov State Univ Moscow 117234 Russia
In modern collaborative filtering applications initial data are typically very large (holding millions of users and items) and come in real time. In this case only incremental algorithms are practically efficient. In ... 详细信息
来源: 评论
Linear Replicator in Kernel Space
Linear Replicator in Kernel Space
收藏 引用
7th International Symposium on Neural Networks
作者: Cheng, Wei-Chen Liou, Cheng-Yuan Natl Taiwan Univ Dept Comp Sci & Informat Engn Taipei Taiwan
This paper presents a linear replicator [2][4] based on minimizing the reconstruction error [8][9]. It can be used to study the learning behaviors of the kernel principal component analysis [10] the hebbian algorithm ... 详细信息
来源: 评论
Learning principal directions: Integrated-squared-error minimization
收藏 引用
NEUROCOMPUTING 2007年 第7-9期70卷 1372-1381页
作者: Ahn, Jong-Hoon Oh, Jong-Hoon Choi, Seungjin Pohang Univ Sci & Technol Dept Comp Sci Pohang 790784 South Korea Pohang Univ Sci & Technol Dept Phys Pohang 790784 South Korea
A common derivation of principal component analysis (PCA) is based on the minimization of the squared-error between centered data and linear model, corresponding to the reconstruction error. In fact, minimizing the sq... 详细信息
来源: 评论
A joint compression-discrimination neural transformation applied to target detection
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS 2005年 第4期35卷 670-681页
作者: Chan, AL Der, SZ Nasrabadi, NM USA Res Lab AMSRD ARL SE SE Adelphi MD 20783 USA Aerosp Corp Chantilly VA USA
Many image recognition algorithms based on data-learning perform dimensionality reduction before the actual learning and classification because the high dimensionality of raw imagery would require enormous training se... 详细信息
来源: 评论
A new hybrid HMM/ANN model for speech recognition
收藏 引用
2nd International Conference on Artificial Intelligence Applications and Innovations
作者: Xi, XJ Lin, KH Zhou, CL Cai, J Xiamen Univ Software Sch Xiamen Peoples R China
Because of the application of the Hidden Markov Model (HMM) in acoustic modeling, a significant breakthrough has been made in recognizing continuous speech with a large glossary. However, some unreasonable hypotheses ... 详细信息
来源: 评论
A NEW HYBRID HMM/ANN MODEL FOR SPEECH RECOGNITION
A NEW HYBRID HMM/ANN MODEL FOR SPEECH RECOGNITION
收藏 引用
IFIP TC12 WG12.5-Second IFIP Conference on Artificial Intelligence Applications and Innovations(AIAI2005)
作者: Xiaojing Xi Kunhui Lin Changle Zhou Jun Cai Software School of XiaMen University Department of Computer Science XiaMen University
Because of the application of the Hidden Markov Model(HMM) in acoustic modeling,a significant breakthrough has been made in recognizing continuous speech with a large ***,some unreasonable hypotheses for acoustic mode... 详细信息
来源: 评论
Multistage infrared target detection
收藏 引用
OPTICAL ENGINEERING 2003年 第9期42卷 2746-2754页
作者: Chan, AL Der, SZ Nasrabadi, NM USA Res Lab Attn AMSRL SE SE Adelphi MD 20783 USA
algorithms are considered for searching wide-area forward-looking infrared imagery for military vehicles. Wide-area search has typically been handled by using a simple detection algorithm with low computational cost t... 详细信息
来源: 评论
Automation of pattern recognition in cDNA microarray data: An application to gene-based diagnostic prediction of cancers
Automation of pattern recognition in cDNA microarray data: A...
收藏 引用
Conference on Vision Geometry XI
作者: Wang, LY Assadi, AH Univ Wisconsin Dept Biomed Engn Madison WI USA
The purpose of this paper is two-fold: (a) to demonstrate that pattern recognition methods in image processing leads to a noticeable improvement in bioinformatics, specifically, analysis of microarray data(**) in gene... 详细信息
来源: 评论
Neural networks for seismic principal components analysis
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1999年 第1期37卷 297-311页
作者: Huang, KY Natl Chiao Tung Univ Dept Comp & Informat Sci Hsinchu 30050 Taiwan
The neural network, using an unsupervised generalized hebbian algorithm (GHA), is adopted to find the principal eigenvectors of a covariance matrix in different kinds of seismograms. We have shown that the extensive c... 详细信息
来源: 评论
CGHA for principal component extraction in the complex domain
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS 1997年 第5期8卷 1031-1036页
作者: Zhang, YW Ma, YL NORTHWESTERN POLYTECH UNIV COLL MARINE ENGN XIAN 710072 PEOPLES R CHINA
Principal component extraction is an efficient statistical tool which is applied to data compression, feature extraction, signal processing, etc. Representative algorithms in the literature can only handle real data. ... 详细信息
来源: 评论