It is known experimentally that an AK16 peptide forms more alpha-helix, structures with increasing pressure while proteins unfold in general. In order to understand this abnormality, molecular dynamics (MD) simulation...
详细信息
It is known experimentally that an AK16 peptide forms more alpha-helix, structures with increasing pressure while proteins unfold in general. In order to understand this abnormality, molecular dynamics (MD) simulations with the simulated tempering method for the isobaric-isothermal ensemble were performed in a wide pressure range from 1.0 X 10(-4) GPa to 1.4 GPa. From the results of the simulations, it is found that the fraction of the folded state decreases once and increases after that with increasing pressure. The partial molar volume change from the folded state to unfolded state increases monotonically from a negative value to a positive value with pressure. The behavior under high pressure conditions is consistent with the experimental results. The radius of gyration of highly helical structures decreases with increasing pressure, which indicates that the helix structure shrinks with pressure. This is the reason why the fraction of the folded state increases as pressure increases.
In biomolecular systems (especially all-atom models) with many degrees of freedom such as proteins and nucleic acids, there exist an astronomically large number of local-minimum-energy states. Conventional simulations...
详细信息
In biomolecular systems (especially all-atom models) with many degrees of freedom such as proteins and nucleic acids, there exist an astronomically large number of local-minimum-energy states. Conventional simulations in the canonical ensemble are of little use, because they tend to get trapped in states of these energy local minima. Enhanced conformational sampling techniques are thus in great demand. A simulation in generalizedensemble performs a random walk in potential energy space and can overcome this difficulty. From only one simulation run, one can obtain canonical-ensemble averages of physical quantities as functions of temperature by the single-histogram and/or multiple-histogram reweighting techniques. In this article we review uses of the generalized-ensemble algorithms in biomolecular systems. Three well-known methods, namely, multicanonical algorithm, simulated tempering, and replica-exchange method, are described first. Both Monte Carlo and molecular dynamics versions of the algorithms are given. We then present various extensions of these three generalized-ensemble algorithms. The effectiveness of the methods is tested with short peptide and protein systems. less
暂无评论