咨询与建议

限定检索结果

文献类型

  • 78 篇 会议
  • 61 篇 期刊文献

馆藏范围

  • 139 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 133 篇 工学
    • 91 篇 计算机科学与技术...
    • 55 篇 电气工程
    • 37 篇 控制科学与工程
    • 17 篇 仪器科学与技术
    • 10 篇 软件工程
    • 3 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
  • 16 篇 管理学
    • 16 篇 管理科学与工程(可...
  • 13 篇 理学
    • 8 篇 生物学
    • 3 篇 系统科学
    • 2 篇 数学
    • 1 篇 物理学
  • 2 篇 经济学
    • 2 篇 理论经济学
  • 1 篇 法学
    • 1 篇 法学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 139 篇 genetic network ...
  • 32 篇 evolutionary com...
  • 21 篇 reinforcement le...
  • 12 篇 data mining
  • 10 篇 technical index
  • 10 篇 stock trading mo...
  • 9 篇 classification
  • 8 篇 candlestick char...
  • 8 篇 elevator group s...
  • 8 篇 genetic algorith...
  • 7 篇 genetic programm...
  • 7 篇 association rule...
  • 7 篇 network programm...
  • 6 篇 association rule
  • 6 篇 association rule...
  • 6 篇 evolutionary alg...
  • 5 篇 evolutionary alg...
  • 5 篇 stock trading
  • 5 篇 directed graphs
  • 5 篇 genetic algorith...

机构

  • 20 篇 waseda univ grad...
  • 13 篇 waseda univ grad...
  • 10 篇 waseda univ grad...
  • 10 篇 waseda univ grad...
  • 10 篇 graduate school ...
  • 7 篇 waseda univ grad...
  • 6 篇 waseda univ grad...
  • 4 篇 shanghai univ fi...
  • 4 篇 waseda univ grad...
  • 3 篇 dalian univ tech...
  • 3 篇 waseda univ grad...
  • 2 篇 waseda univ grad...
  • 2 篇 fujitec co ltd h...
  • 2 篇 yamaguchi univ g...
  • 2 篇 yamaguchi univ g...
  • 2 篇 isfahan univ tec...
  • 2 篇 isfahan univ tec...
  • 2 篇 waseda univ
  • 2 篇 hunan univ busin...
  • 2 篇 waseda univ grad...

作者

  • 87 篇 mabu shingo
  • 87 篇 hirasawa kotaro
  • 32 篇 shimada kaoru
  • 22 篇 hu jinglu
  • 16 篇 chen yan
  • 13 篇 kotaro hirasawa
  • 13 篇 shingo mabu
  • 13 篇 yu lu
  • 10 篇 zhou jin
  • 8 篇 markon sandor
  • 7 篇 taboada karla
  • 7 篇 li xianneng
  • 7 篇 yang guangfei
  • 7 篇 yue chuan
  • 7 篇 kuremoto takashi
  • 6 篇 obayashi masanao
  • 6 篇 gonzales eloy
  • 5 篇 li bing
  • 5 篇 wang lutao
  • 5 篇 wedashwara wirar...

语言

  • 135 篇 英文
  • 4 篇 中文
检索条件"主题词=Genetic Network Programming"
139 条 记 录,以下是71-80 订阅
排序:
Implementation of genetic network programming and Knapsack Problem for Record Clustering on Distributed Database  53
Implementation of Genetic Network Programming and Knapsack P...
收藏 引用
SICE Annual Conference (SICE)
作者: Wedashwara, Wirarama Mabu, Shingo Obayashi, Masanao Kuremoto, Takashi Yamaguchi Univ Grad Sch Sci & Engn Yamaguchi Japan
This research involves implementation of genetic network programming (GNP) and knapsack problem (KP) to solve record clustering on distributed databases. The objective is to distribute big data to certain sites with t... 详细信息
来源: 评论
Enhancing Interpretability in Machine Learning: A Focus on genetic network programming, Its Variants, and Applications  10th
Enhancing Interpretability in Machine Learning: A Focus on G...
收藏 引用
10th International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC)
作者: Roshanzamir, Mohamad Alizadehsani, Roohallah Moravvej, Seyed Vahid Joloudari, Javad Hassannataj Alinejad-Rokny, Hamid Gorriz, Juan M. Fasa Univ Fac Engn Dept Comp Engn Fasa Iran Deakin Univ Intelligent Syst Res & Innovat IISRI Geelong Vic Australia Isfahan Univ Technol Dept Elect & Comp Engn Esfahan Iran Tech & Vocat Univ TVU Dept Comp Engn Tehran Iran UNSW Sydney Grad Sch Biomed Engn BioMed Machine Learning Lab Sydney NSW 2052 Australia Univ Granada Dept Signal Theory Networking & Commun Granada Spain
In current machine learning research, deep learning methodologies have become the prevalent approach across various domains, including decision-making processes. However, the interpretability of solutions generated by... 详细信息
来源: 评论
Evaluation on the Robustness of genetic network programming with Reinforcement Learning
Evaluation on the Robustness of Genetic Network Programming ...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Mabu, Shingo Tjahjadi, Andre Sendari, Siti Hirasawa, Kotaro Waseda Univ Grad Sch Informat Prod & Syst Wakamatsu Ku Fukuoka 8080135 Japan
genetic network programming (GNP) has been proposed as one of the evolutionary algorithms and extended with reinforcement learning (GNP-RL). The combination of evolution and learning can efficiently evolve programs an... 详细信息
来源: 评论
Enhancement of trading rules on stock markets using genetic network programming with Sarsa Learning
Enhancement of trading rules on stock markets using Genetic ...
收藏 引用
Annual Conference on the Society-of-Instrument-and-Control-Engineers
作者: Chen, Yan Mabu, Shingo Hirasawa, Kotaro Hu, Jinglu Waseda Univ Grad Sch Informat Prod & Syst Wakamatsu Ku Fukuoka Japan
In this paper, the enhancement of trading rules on stock markets using genetic network programming (GNP) with Sarsa Learning is described. There are three important points in this paper: First, we use GNP with Sarsa l... 详细信息
来源: 评论
Multi-Car Elevator System using genetic network programming
Multi-Car Elevator System using Genetic Network Programming
收藏 引用
Annual Conference of the SICE
作者: Yu, Lu Zhou, Jin Mabu, Shingo Shimada, Kaoru Hirasawa, Kotaro Markon, Sandor Waseda Univ Grad Sch Informat Prod & Syst Wakamatsu Ku Hibikino 2 Fukuoka 8030235 Japan Fujitec Co Ltd Hikone Shiga 5228588 Japan
Elevator group control systems are the control systems that systematically manage elevators in order to transport passengers efficiently. With the increasing need for-high-performance transportation systems in buildin... 详细信息
来源: 评论
Autonomous acquisition of cooperative behavior based on a theory of mind using parallel genetic network programming
Autonomous acquisition of cooperative behavior based on a th...
收藏 引用
16th International Symposium on Artificial Life and Robotics (AROB 16th '11)
作者: Minoya, Kenichi Arita, Takaya Omori, Takashi Nagoya Univ Grad Sch Informat Sci Chikusa Ku Furo Cho Nagoya Aichi 4648601 Japan Tamagawa Univ Coll Engn Machida Tokyo 1948610 Japan
Understanding of others as having intentional states such as beliefs and desires is called Theory of Mind (ToM). To clarify the mechanism of the autonomous acquisition of cooperative behavior based on the ToM, we cons... 详细信息
来源: 评论
Trading Rules on Stock Markets Using genetic network programming with Sarsa Learning  07
Trading Rules on Stock Markets Using Genetic Network Program...
收藏 引用
Annual Conference of genetic and Evolutionary Computation Conference
作者: Chen, Yan Mabu, Shingo Hirasawa, Kotaro Hu, Jinglu Waseda Univ Grad Sch Informat Prod & Syst Tokyo Japan
In this paper, the genetic network programming (GNP) for creating trading rules on stocks is described. GNP is an evolutionary computation, which represents its solutions using graph structures and has some useful fea... 详细信息
来源: 评论
Variable Size genetic network programming with Binomial Distribution
Variable Size Genetic Network Programming with Binomial Dist...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC)
作者: Li, Bing Li, Xianneng Mabu, Shingo Hirasawa, Kotaro Waseda Univ Grad Sch Informat Prod & Syst Fukuoka Japan
This paper proposes a different type of genetic network programming (GNP) - Variable Size genetic network programming (GNPvs) with Binomial Distribution. In contrast to the individuals with fixed size in Standard GNP,... 详细信息
来源: 评论
Association Rule Mining for Continuous Attributes using genetic network programming  07
Association Rule Mining for Continuous Attributes using Gene...
收藏 引用
Annual Conference of genetic and Evolutionary Computation Conference
作者: Taboada, Karla Shimada, Kaoru Mabu, Shingo Hirasawa, Kotaro Hu, Jinglu Waseda Univ Grad Sch Informat Prod & Syst Tokyo Japan
Most association rule mining algorithms make use of discretization algorithms for handling continuous attributes. However, by means of methods of discretization, it is difficult to get highest attribute interdependenc... 详细信息
来源: 评论
A Multitasks Learning Approach to Autonomous Agent based on genetic network programming
A Multitasks Learning Approach to Autonomous Agent based on ...
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / International Joint Conference on Neural networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE-CEC) / IEEE World Congress on Computational Intelligence (IEEE-WCCI)
作者: Yang, Yang Mabu, Shingo Hirasawa, Kotaro Waseda Univ Grad Sch Informat Prod & Syst Wakamatsu Ku Kitakyushu Fukuoka 8080135 Japan
The standard methodology in machine learning is to learn one problem at a time. But, many real-world problems are complex and have multitasks, and it is a bit hard to learn them well by one machine learning approach. ... 详细信息
来源: 评论