咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 19 篇 工学
    • 15 篇 测绘科学与技术
    • 8 篇 环境科学与工程(可...
    • 4 篇 电气工程
    • 4 篇 控制科学与工程
    • 4 篇 计算机科学与技术...
    • 3 篇 仪器科学与技术
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 安全科学与工程
  • 17 篇 理学
    • 14 篇 地球物理学
    • 3 篇 物理学
    • 3 篇 地理学
    • 1 篇 数学
    • 1 篇 化学
    • 1 篇 生物学
  • 9 篇 医学
    • 8 篇 临床医学
    • 1 篇 公共卫生与预防医...
  • 2 篇 农学
    • 2 篇 农业资源与环境
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 公共管理
    • 1 篇 图书情报与档案管...

主题

  • 19 篇 geospatial objec...
  • 3 篇 high spatial res...
  • 2 篇 optical remote s...
  • 2 篇 deep learning
  • 2 篇 very high resolu...
  • 2 篇 part-based model
  • 2 篇 feature sharing
  • 2 篇 hierarchical fea...
  • 2 篇 pre-training mec...
  • 2 篇 remote sensing i...
  • 2 篇 morphological py...
  • 2 篇 convolutional ne...
  • 1 篇 deformation feat...
  • 1 篇 cloud detection
  • 1 篇 segmentation
  • 1 篇 semantic informa...
  • 1 篇 high resolution ...
  • 1 篇 high resolution ...
  • 1 篇 digital surface ...
  • 1 篇 multi-scale dete...

机构

  • 3 篇 wuhan univ state...
  • 3 篇 wuhan univ colla...
  • 2 篇 cetc key lab aer...
  • 2 篇 german aerosp ct...
  • 1 篇 wuhan univ liesm...
  • 1 篇 incept inst arti...
  • 1 篇 sun yat sen univ...
  • 1 篇 tongji univ coll...
  • 1 篇 beihang univ sch...
  • 1 篇 northwestern pol...
  • 1 篇 natl univ def te...
  • 1 篇 univ chinese aca...
  • 1 篇 helmholtz zentru...
  • 1 篇 beijing inst tec...
  • 1 篇 chinese acad sci...
  • 1 篇 school of set sh...
  • 1 篇 nanyang technol ...
  • 1 篇 shanghai jiao to...
  • 1 篇 peking univ inst...
  • 1 篇 wuhan univ sch e...

作者

  • 4 篇 zhong yanfei
  • 4 篇 han xiaobing
  • 3 篇 zhang liangpei
  • 2 篇 tao ran
  • 2 篇 hong danfeng
  • 2 篇 wu xin
  • 1 篇 ghamisi pedram
  • 1 篇 chen shiqi
  • 1 篇 gao zhongling
  • 1 篇 hua guang
  • 1 篇 wang ping
  • 1 篇 jun wang
  • 1 篇 fu kun
  • 1 篇 qiming qin
  • 1 篇 guo yiyou
  • 1 篇 cheng gong
  • 1 篇 tong xiaohua
  • 1 篇 wang hongqi
  • 1 篇 li qiang
  • 1 篇 liu di

语言

  • 16 篇 英文
  • 3 篇 其他
检索条件"主题词=Geospatial Object Detection"
19 条 记 录,以下是1-10 订阅
排序:
geospatial object detection in Hyperspectral Imagery Using Spectral-Spatial Networks
Geospatial Object Detection in Hyperspectral Imagery Using S...
收藏 引用
2023 Intelligent Computing and Control for Engineering and Business Systems, ICCEBS 2023
作者: Prabakar, D. Pranavan, S. Kumbhkar, Makhan Sah, Swati Patil, Harshal Firos, A. Computer Science and Engineering Karpagam College of Engineering Coimbatore India Dhanalakshmi Srinivasan College of Engineering Department of Civil Engineering Navakkarai Coimbatore India Indian Institute of Soybean Research Department of Computer Application Indore India School of Set Sharda University Greater Noida India Pune India Rono-Hills Department of Computer Science and Engineering Arunachal Pradesh Doimukh India
By recording a wide range of spectral bands across the electromagnetic spectrum, hyperspectral imagery (HSI) delivers extensive information. Due to the complicated interaction between spectral and spatial properties, ... 详细信息
来源: 评论
SINGLE-SHOT BALANCED DETECTOR FOR geospatial object detection  47
SINGLE-SHOT BALANCED DETECTOR FOR GEOSPATIAL OBJECT DETECTIO...
收藏 引用
47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Liu, Yanfeng Li, Qiang Yuan, Yuan Wang, Qi Northwestern Polytech Univ Sch Comp Sci Xian 710072 Shaanxi Peoples R China Northwestern Polytech Univ Sch Artificial Intelligence Opt & Elect iOPEN Xian 710072 Shaanxi Peoples R China
geospatial object detection is an essential task in remote sensing community. One-stage methods based on deep learning have faster running speed but cannot reach higher detection accuracy than two-stage methods. In th... 详细信息
来源: 评论
On-Board Multi-Class geospatial object detection Based on Convolutional Neural Network for High Resolution Remote Sensing Images
收藏 引用
REMOTE SENSING 2023年 第16期15卷 3963-3963页
作者: Shen, Yanyun Liu, Di Chen, Junyi Wang, Zhipan Wang, Zhe Zhang, Qingling Sun Yat Sen Univ Sch Aeronaut & Astronaut Shenzhen Campus66 Gongchang Rd Shenzhen 518107 Peoples R China Sun Yat Sen Univ Shenzhen Key Lab Intelligent Microsatellite Conste Shenzhen Campus66 Gongchang Road Shenzhen 518107 Peoples R China
Multi-class geospatial object detection in high-resolution remote sensing images has significant potential in various domains such as industrial production, military warning, disaster monitoring, and urban planning. H... 详细信息
来源: 评论
geospatial object detection WITH SINGLE SHOT ANCHOR-FREE NETWORK
GEOSPATIAL OBJECT DETECTION WITH SINGLE SHOT ANCHOR-FREE NET...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Guo, Yiyou Ji, Jinsheng Lu, Xiankai Xie, Huan Tong, Xiaohua Tongji Univ Coll Surveying & Geoinformat Shanghai 200092 Peoples R China Shanghai Jiao Tong Univ Shanghai Key Lab Intelligent Sensing & Recognit Shanghai 200240 Peoples R China Incept Inst Artificial Intelligence Abu Dhabi 5151 U Arab Emirates
geospatial object detection has made considerable progress with the use of anchor-based object detectors. In such a situation, the detection performance relies heavily on the parameter settings of anchor boxes. We pre... 详细信息
来源: 评论
geospatial object detection IN REMOTE SENSING IMAGES BASED ON MULTI-SCALE CONVOLUTIONAL NEURAL NETWORKS  39
GEOSPATIAL OBJECT DETECTION IN REMOTE SENSING IMAGES BASED O...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Yao, Qunli Hu, Xian Lei, Hong Chinese Acad Sci Inst Elect Dept Space Microwave Remote Sensing Syst Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100049 Peoples R China
Automatic object detection is a basic but challenging problem in remote sensing images (RSIs) interpretation. Recently, a context-based top-down detection architecture has been proposed, which generates high-quality f... 详细信息
来源: 评论
geospatial object detection in High Resolution Satellite Images Based on Multi-Scale Convolutional Neural Network
收藏 引用
REMOTE SENSING 2018年 第1期10卷 131-131页
作者: Guo, Wei Yang, Wen Zhang, Haijian Hua, Guang Wuhan Univ Sch Elect Informat Wuhan 430072 Peoples R China CETC Key Lab Aerosp Informat Applicat Shijiazhuang 050081 Hebei Peoples R China
Daily acquisition of large amounts of aerial and satellite images has facilitated subsequent automatic interpretations of these images. One such interpretation is object detection. Despite the great progress made in t... 详细信息
来源: 评论
Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery
收藏 引用
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 2018年 138卷 281-294页
作者: Zhong, Yanfei Han, Xiaobing Zhang, Liangpei Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan 430079 Hubei Peoples R China Wuhan Univ Collaborat Innovat Ctr Geospatial Technol Wuhan 430079 Hubei Peoples R China
Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the d... 详细信息
来源: 评论
A Single Shot Framework with Multi-Scale Feature Fusion for geospatial object detection
收藏 引用
REMOTE SENSING 2019年 第5期11卷 594-594页
作者: Zhuang, Shuo Wang, Ping Jiang, Boran Wang, Gang Wang, Cong Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China CETC Key Lab Aerosp Informat Applicat Shijiazhuang 050081 Hebei Peoples R China
With the rapid advances in remote-sensing technologies and the larger number of satellite images, fast and effective object detection plays an important role in understanding and analyzing image information, which cou... 详细信息
来源: 评论
geospatial object detection in Remote Sensing Imagery Based on Multiscale Single-Shot Detector with Activated Semantics
收藏 引用
REMOTE SENSING 2018年 第6期10卷 820-820页
作者: Chen, Shiqi Zhan, Ronghui Zhang, Jun Natl Univ Def Technol Sci & Technol Automat Target Recognit Lab Changsha 410073 Hunan Peoples R China
geospatial object detection from high spatial resolution (HSR) remote sensing imagery is a heated and challenging problem in the field of automatic image interpretation. Despite convolutional neural networks (CNNs) ha... 详细信息
来源: 评论
ROBUST geospatial object detection BASED ON PRE-TRAINED FASTER R-CNN FRAMEWORK FOR HIGH SPATIAL RESOLUTION IMAGERY  37
ROBUST GEOSPATIAL OBJECT DETECTION BASED ON PRE-TRAINED FAST...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Han, Xiaobing Zhong, Yanfei Feng, Ruyi Zhang, Liangpei Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan 430079 Hubei Peoples R China Wuhan Univ Collaborat Innovat Ctr Geospatial Technol Wuhan 430079 Hubei Peoples R China China Univ Geosci Sch Comp Sci Beijing Peoples R China
geospatial object detection from high spatial resolution (HSR) imagery is significant and challenging for further analyzing the object-related information in various civil and military applications. Traditional object... 详细信息
来源: 评论