咨询与建议

限定检索结果

文献类型

  • 147 篇 期刊文献
  • 107 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 255 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 227 篇 工学
    • 101 篇 电气工程
    • 98 篇 计算机科学与技术...
    • 57 篇 控制科学与工程
    • 20 篇 信息与通信工程
    • 18 篇 软件工程
    • 17 篇 仪器科学与技术
    • 15 篇 机械工程
    • 12 篇 石油与天然气工程
    • 11 篇 电子科学与技术(可...
    • 7 篇 环境科学与工程(可...
    • 6 篇 材料科学与工程(可...
    • 6 篇 土木工程
    • 5 篇 动力工程及工程热...
    • 5 篇 化学工程与技术
    • 5 篇 航空宇航科学与技...
    • 4 篇 力学(可授工学、理...
    • 4 篇 水利工程
    • 4 篇 测绘科学与技术
    • 4 篇 交通运输工程
    • 3 篇 光学工程
  • 58 篇 理学
    • 22 篇 物理学
    • 20 篇 数学
    • 7 篇 化学
    • 5 篇 生物学
    • 5 篇 统计学(可授理学、...
    • 4 篇 地球物理学
    • 4 篇 系统科学
  • 34 篇 管理学
    • 33 篇 管理科学与工程(可...
  • 10 篇 医学
    • 6 篇 临床医学
  • 3 篇 经济学
  • 3 篇 教育学
  • 2 篇 农学
  • 2 篇 艺术学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 255 篇 gradient descent...
  • 14 篇 gradient methods
  • 10 篇 neural network
  • 7 篇 optimization
  • 7 篇 particle swarm o...
  • 7 篇 genetic algorith...
  • 6 篇 system identific...
  • 6 篇 convergence
  • 6 篇 learning (artifi...
  • 5 篇 neural networks
  • 5 篇 fuzzy systems
  • 5 篇 wireless sensor ...
  • 5 篇 lyapunov stabili...
  • 4 篇 deep learning
  • 4 篇 neural nets
  • 4 篇 image segmentati...
  • 4 篇 pid control
  • 4 篇 mathematical mod...
  • 4 篇 parameter estima...
  • 4 篇 adaptation model...

机构

  • 3 篇 beijing univ tec...
  • 3 篇 jiangnan univ sc...
  • 3 篇 beijing key lab ...
  • 3 篇 univ windsor dep...
  • 3 篇 shandong univ sc...
  • 2 篇 univ jijel laj j...
  • 2 篇 iit kanpur dept ...
  • 2 篇 institute of rob...
  • 2 篇 tsinghua univ ts...
  • 2 篇 univ fed rio de ...
  • 2 篇 knt univ technol...
  • 2 篇 univ texas arlin...
  • 2 篇 middle tennessee...
  • 2 篇 univ chinese aca...
  • 2 篇 ningbo univ fac ...
  • 2 篇 city univ hong k...
  • 2 篇 college of infor...
  • 2 篇 northeastern uni...
  • 2 篇 cnpc res inst sa...
  • 2 篇 wuhan univ sch m...

作者

  • 4 篇 kar narayan c.
  • 3 篇 boubertakh hamid
  • 3 篇 belen'kii mikhai...
  • 3 篇 tjong jimi
  • 3 篇 runyeon hope
  • 3 篇 zhou ding-xuan
  • 3 篇 cherrat nidhal
  • 3 篇 rye vincent
  • 3 篇 yang zhang
  • 3 篇 kumar jitendra
  • 3 篇 zheng xiaolong
  • 3 篇 feng guodong
  • 3 篇 chen jing
  • 3 篇 yang xuebo
  • 3 篇 xiao zhiyong
  • 3 篇 lai chunyan
  • 2 篇 radhakrishnan t....
  • 2 篇 yang jinlong
  • 2 篇 liu ziqi
  • 2 篇 cao yijia

语言

  • 241 篇 英文
  • 8 篇 其他
  • 6 篇 中文
检索条件"主题词=Gradient Descent Algorithm"
255 条 记 录,以下是81-90 订阅
排序:
A DATA-DRIVEN FAULT DETECTION APPROACH WITH PERFORMANCE OPTIMIZATION
收藏 引用
CANADIAN JOURNAL OF CHEMICAL ENGINEERING 2018年 第2期96卷 507-514页
作者: Li, Linlin Ding, Steven X. Peng, Kaixiang Han, Huayun Yang, Ying Yang, Xu Univ Sci & Technol Beijing Sch Automat & Elect Engn Key Lab Knowledge Automat Ind Proc Minist Educ Beijing 100083 Peoples R China Univ Duisburg Essen Inst Automat Control & Complex Syst AKS D-47057 Duisburg Germany Peking Univ Dept Mech & Engn Sci Coll Engn State Key Lab Turbulence & Complex Syst Beijing 100871 Peoples R China
This paper is concerned with the data-driven realization of fault detection approach with performance optimization. For our purpose, the datadriven realization form of linear kernel representations is studied first, w... 详细信息
来源: 评论
Efficient classification algorithm and a new training mode for the adaptive radial basis function neural network equaliser
收藏 引用
IET COMMUNICATIONS 2012年 第2期6卷 125-137页
作者: Assaf, R. El Assad, S. Harkouss, Y. Zoaeter, M. Team Image Site Nantex HDR IETR Lab Intitut Elect & Telecommun Rennes IETR UMR CNRS 6164 Rennes France
The study presents a new classification algorithm and a new online training mode used for learning the parameters of a Bayesian RBFNN (radial basis function neural network) equaliser in a non-linear time-varying chann... 详细信息
来源: 评论
AdaRW training optimization algorithm for deep learning model of marine target detection based on SAR
收藏 引用
INTERNATIONAL JOURNAL OF REMOTE SENSING 2022年 第1期43卷 120-131页
作者: Li, Wanwu Liu, Lin Zhang, Jixian Shandong Univ Sci & Technol Coll Geodesy & Geomat Qingdao 266590 Peoples R China Natl Qual Inspect & Testing Ctr Surveying & Mappi Beijing Peoples R China
Deep learning adjusts parameters to optimize the model through model training. Training algorithm is the key to model optimization and implementation. Therefore, the improvement of model training algorithm is of great... 详细信息
来源: 评论
Filtering-Based Accelerated Estimation Approach for Generalized Time-Varying Systems With Disturbances and Colored Noises
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS 2023年 第1期70卷 206-210页
作者: Ji, Yan Jiang, Anning Qingdao Univ Sci & Technol Coll Automat & Elect Engn Qingdao 266061 Peoples R China
This brief studies the parameter estimation problem of a generalized time-varying system by using a novel gradient descent algorithm. The time-varying parameters are estimated by the accelerating gradient descent algo... 详细信息
来源: 评论
RAPIDO: a rejuvenating adaptive PID-type optimiser for deep neural networks
收藏 引用
ELECTRONICS LETTERS 2019年 第16期55卷 899-901页
作者: Kim, S. Park, D. J. Chang, D. E. Korea Adv Inst Sci & Technol Sch Elect Engn Daejeon 34141 South Korea
The authors present a novel gradient descent algorithm called RAPIDO for deep learning. It adapts over time and performs optimisation using current, past and future information similar to the PID controller. The propo... 详细信息
来源: 评论
MODELING AND PREDICTIVE CONTROL USING HYBRID INTELLIGENT TECHNIQUES FOR A NONLINEAR MULTIVARIABLE PROCESS
收藏 引用
INSTRUMENTATION SCIENCE & TECHNOLOGY 2011年 第2期39卷 211-230页
作者: Subathra, B. Radhakrishnan, T. K. Natl Inst Technol Dept Chem Engn Tiruchirappalli 620015 Tamil Nadu India
A recurrent neuro fuzzy network (RNFN) model-based multistep ahead predictive control strategy is proposed in this article. The fuzzy logic (FL) and neural networks (NN) are intelligent system approaches, and they com... 详细信息
来源: 评论
Standalone CMAC Control System With Online Learning Ability
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS 2010年 第1期40卷 43-53页
作者: Yeh, Ming-Feng Tsai, Cheng-Hung Lunghwa Univ Sci & Technol Dept Elect Engn Tao Yuan 33327 Taiwan Univ Sci & Technol China Dept Elect Engn Taipei 11581 Taiwan
A cerebellar model articulation controller (CMAC) control system, which contains only one single-input controller implemented by a differentiable CMAC, is proposed in this paper. In the proposed scheme, the CMAC contr... 详细信息
来源: 评论
Online learning of mixture experts for real-time tracking
收藏 引用
IET COMPUTER VISION 2016年 第6期10卷 585-592页
作者: Gu, S. Ma, Z. Xie, M. Chen, Z. Univ Elect Sci & Technol China Sch Commun & Informat Engn Chengdu Peoples R China Univ Elect Sci & Technol China Sch Elect Engn Chengdu Peoples R China Mem Univ Newfoundland Fac Comp Sci St John NF Canada
Template tracking has been extensively investigated in computer vision to track objects for various applications. Tracking based on gradient descent algorithm using image gradient is one of the most popular object tra... 详细信息
来源: 评论
A Low Noise Floor 3 x 3 Coupler Phase Demodulation Scheme
收藏 引用
JOURNAL OF LIGHTWAVE TECHNOLOGY 2024年 第1期42卷 470-476页
作者: Zhang, Jihao Wu, Xuqiang Zhou, Wen Shi, Jinhui Guang, Dong Zuo, Cheng Mu, Shengquan Liu, Yangzhou Lin, Zhiwei Fang, Chongxu Yu, Benli Anhui Univ Informat Mat & Intelligent Sensing Lab Anhui Prov Hefei 230601 Peoples R China Anhui Univ Key Lab Optoelect Informat Acquisit & Manipulat Minist Educ Hefei 230601 Peoples R China
Refining the noise floor and enhancing reliability are crucial for optical fiber sensing systems employing 3 x 3 coupler phase demodulation technology. In this article, we achieve the intensity noise cancellation by d... 详细信息
来源: 评论
Hierarchical wavelet packet fuzzy inference system for pattern classification and system identification
收藏 引用
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 2013年 第1期44卷 109-126页
作者: Sharifi, A. Shoorehdeli, M. Aliyari Teshnehlab, M. Islamic Azad Univ Sci & Res Branch Dept Comp Tehran Iran KNT Univ Technol Mechatron Dept Tehran Iran KNT Univ Technol Dept Elect Engn Tehran Iran
This study presents a hierarchical Takagi-Sugeno-Kang type fuzzy system called hierarchical wavelet packet fuzzy inference system. In the proposed method, wavelet packet transform is applied on the input data to produ... 详细信息
来源: 评论