咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...

主题

  • 2 篇 twin support vec...
  • 2 篇 support vector r...
  • 2 篇 unconstrained co...
  • 2 篇 gradient based i...
  • 2 篇 smooth approxima...
  • 1 篇 generalized hess...

机构

  • 2 篇 jawaharlal nehru...

作者

  • 2 篇 balasundaram s.
  • 1 篇 gupta deepak
  • 1 篇 meena yogendra

语言

  • 2 篇 英文
检索条件"主题词=Gradient based iterative methods"
2 条 记 录,以下是1-10 订阅
排序:
Training primal twin support vector regression via unconstrained convex minimization
收藏 引用
APPLIED INTELLIGENCE 2016年 第4期44卷 931-955页
作者: Balasundaram, S. Meena, Yogendra Jawaharlal Nehru Univ Sch Comp & Syst Sci New Delhi 110067 India
In this paper, we propose a new unconstrained twin support vector regression model in the primal space (UPTSVR). With the addition of a regularization term in the formulation of the problem, the structural risk is min... 详细信息
来源: 评论
Training Lagrangian twin support vector regression via unconstrained convex minimization
收藏 引用
KNOWLEDGE-based SYSTEMS 2014年 59卷 85-96页
作者: Balasundaram, S. Gupta, Deepak Jawaharlal Nehru Univ Sch Comp & Syst Sci New Delhi 110067 India
In this paper, a new unconstrained convex minimization problem formulation is proposed as the Lagrangian dual of the 2-norm twin support vector regression (TSVR). The proposed formulation leads to two smaller sized un... 详细信息
来源: 评论