咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 医学
    • 1 篇 公共卫生与预防医...
  • 1 篇 管理学
    • 1 篇 公共管理

主题

  • 1 篇 gradient-based e...
  • 1 篇 monte carlo batc...
  • 1 篇 neuroimaging
  • 1 篇 monte carlo drop...
  • 1 篇 clinical decisio...
  • 1 篇 explainable arti...

机构

  • 1 篇 wallace h. coult...
  • 1 篇 department of co...
  • 1 篇 tri-institutiona...

作者

  • 1 篇 ellis charles a.
  • 1 篇 calhoun vince d.
  • 1 篇 miller robyn l.

语言

  • 1 篇 英文
检索条件"主题词=Gradient-based explainability methods"
1 条 记 录,以下是1-10 订阅
排序:
Towards greater neuroimaging classification transparency via the integration of explainability methods and confidence estimation approaches
收藏 引用
Informatics in Medicine Unlocked 2023年 37卷 101176页
作者: Ellis, Charles A. Miller, Robyn L. Calhoun, Vince D. Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Dr NW Atlanta 30332 GA United States Tri-institutional Center for Translational Research in Neuroimaging and Data Science: Georgia State University Georgia Institute of Technology Emory University 55 Park Pl NE Atlanta 30303 GA United States Department of Computer Science Georgia State University 25 Park PlaceSuite 700 Atlanta 30303 GA United States
The field of neuroimaging has increasingly sought to develop artificial intelligence-based models for neurological and neuropsychiatric disorder automated diagnosis and clinical decision support. However, if these mod... 详细信息
来源: 评论