咨询与建议

限定检索结果

文献类型

  • 37 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 72 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 70 篇 工学
    • 66 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 12 篇 软件工程
    • 7 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 测绘科学与技术
    • 1 篇 网络空间安全
  • 7 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 6 篇 理学
    • 2 篇 数学
    • 2 篇 生物学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 统计学(可授理学、...
  • 4 篇 医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 临床医学
  • 1 篇 农学

主题

  • 72 篇 graph anomaly de...
  • 24 篇 graph neural net...
  • 14 篇 anomaly detectio...
  • 9 篇 contrastive lear...
  • 7 篇 unsupervised lea...
  • 6 篇 graph neural net...
  • 5 篇 self-supervised ...
  • 4 篇 deep learning
  • 4 篇 feature extracti...
  • 4 篇 graph representa...
  • 3 篇 representation l...
  • 3 篇 message passing
  • 3 篇 heterophily
  • 3 篇 reviews
  • 3 篇 semantics
  • 3 篇 graph embedding
  • 3 篇 data augmentatio...
  • 3 篇 training
  • 2 篇 outlier detectio...
  • 2 篇 lateral movement

机构

  • 5 篇 macquarie univ s...
  • 3 篇 tianjin univ col...
  • 2 篇 xi an jiao tong ...
  • 2 篇 wuhan univ renmi...
  • 2 篇 guangxi normal u...
  • 2 篇 wuhan univ sch c...
  • 2 篇 xi an jiao tong ...
  • 2 篇 hong kong univ s...
  • 2 篇 suny albany dept...
  • 2 篇 northwest normal...
  • 2 篇 univ elect sci &...
  • 2 篇 macquarie univ s...
  • 2 篇 intelligent game...
  • 2 篇 guilin univ elec...
  • 2 篇 natl univ def te...
  • 1 篇 ocean univ china...
  • 1 篇 leiden univ liac...
  • 1 篇 chinese acad sci...
  • 1 篇 china jiliang un...
  • 1 篇 ulsan natl inst ...

作者

  • 5 篇 wu jia
  • 5 篇 yang jian
  • 5 篇 ma xiaoxiao
  • 4 篇 wang siwei
  • 4 篇 liu xinwang
  • 3 篇 luo xuexiong
  • 3 篇 duan jingcan
  • 3 篇 akoglu leman
  • 3 篇 wang zitong
  • 3 篇 sheng quan z.
  • 2 篇 wang wenjun
  • 2 篇 pang shikang
  • 2 篇 hu jingtao
  • 2 篇 zhou qinghai
  • 2 篇 chang liang
  • 2 篇 jin hu
  • 2 篇 wu nannan
  • 2 篇 tong hanghang
  • 2 篇 zhang sai
  • 2 篇 cadena jose

语言

  • 72 篇 英文
检索条件"主题词=Graph Anomaly Detection"
72 条 记 录,以下是1-10 订阅
排序:
graph anomaly detection via Multiscale Contrastive Self-Supervised Learning From Local to Global
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2025年 第2期12卷 485-497页
作者: Wang, Xiaofeng Lai, Shuaiming Zhu, Shuailei Chen, Yuntao Lv, Laishui Qi, Yuanyuan China Jiliang Univ Sch Informat Engn Hangzhou 310018 Peoples R China
graph anomaly detection is a challenging task in graph data mining, aiming to recognize unconventional patterns within a network. Recently, there has been increasing attention on graph anomaly detection based on contr... 详细信息
来源: 评论
graph anomaly detection based on hybrid node representation learning
收藏 引用
NEURAL NETWORKS 2025年 185卷 107169页
作者: Wang, Xiang Dou, Hao Dong, Dibo Meng, Zhenyu Fujian Univ Technol Inst Artificial Intelligence Fuzhou Peoples R China Fujian Univ Technol Fujian Prov Key Lab Big Data Min & Applicat Fuzhou Peoples R China Fujian Univ Technol Inst Smart Marine & Engn Fuzhou 350118 Peoples R China
anomaly detection on graph data has garnered significant interest from both the academia and industry. In recent years, fueled by the rapid development of graph Neural Networks (GNNs), various GNNs-based anomaly detec... 详细信息
来源: 评论
graph anomaly detection via Multi-View Discriminative Awareness Learning
收藏 引用
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2024年 第6期11卷 6623-6635页
作者: Lian, Jie Wang, Xuzheng Lin, Xincan Wu, Zhihao Wang, Shiping Guo, Wenzhong Fuzhou Univ Coll Comp & Data Sci Fuzhou 350108 Peoples R China Fuzhou Univ Fujian Prov Key Lab Network Comp & Intelligent Inf Fuzhou 350108 Peoples R China
With the deeper research on attributed networks, graph anomaly detection is becoming an increasingly important topic. It aims to identify patterns deviating from a majority of nodes. Currently, graph anomaly detection... 详细信息
来源: 评论
graph anomaly detection with Few Labels: A Data-Centric Approach  24
Graph Anomaly Detection with Few Labels: A Data-Centric Appr...
收藏 引用
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
作者: Ma, Xiaoxiao Li, Ruikun Liu, Fanzhen Ding, Kaize Yang, Jian Wu, Jia Macquarie Univ Sch Comp Sydney NSW Australia Univ Sydney Business Sch Sydney NSW Australia Northwestern Univ Dept Stat & Data Sci Evanston IL USA
Anomalous node detection in a static graph faces significant challenges due to the rarity of anomalies and the substantial cost of labeling their deviant structure and attribute patterns. These challenges give rise to... 详细信息
来源: 评论
graph anomaly detection with Adaptive Node Mixup  24
Graph Anomaly Detection with Adaptive Node Mixup
收藏 引用
33rd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Zhou, Qinghai Chen, Yuzhong Xu, Zhe Wu, Yuhang Pan, Menghai Das, Mahashweta Yang, Hao Tong, Hanghang Univ Illinois Urbana IL 61801 USA Visa Res Foster City CA USA Meta Platforms Inc Menlo Pk CA USA
graph anomaly detection (GAD) aims to find network elements (e.g., nodes, edges) with significantly atypical patterns and has a profound impact in a variety of application domains, including social network analysis, s... 详细信息
来源: 评论
graph anomaly detection With graph Neural Networks: Current Status and Challenges
收藏 引用
IEEE ACCESS 2022年 10卷 111820-111829页
作者: Kim, Hwan Lee, Byung Suk Shin, Won-Yong Lim, Sungsu Chungnam Natl Univ Dept Comp Sci & Engn Daejeon 34134 South Korea Univ Vermont Dept Comp Sci Burlington VT 05405 USA Yonsei Univ Sch Math & Comp Dept Computat Sci & Engn Seoul 03722 South Korea Pohang Univ Sci & Technol POSTECH Dept Artificial Intelligence Pohang 37673 South Korea
graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. graph anomalies are patterns in a graph that do not conform to normal patter... 详细信息
来源: 评论
Tackling under-reaching issue in Beta-Wavelet filters with mixup augmentation for graph anomaly detection
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 275卷
作者: Do, Thu Uyen Ta, Viet Cuong VNU Univ Engn & Technol Inst Artificial Intelligence 144 Xuan Thuy St Hanoi 100000 Vietnam VNU Univ Engn & Technol Human Machine Interact Lab 144 Xuan Thuy St Hanoi 100000 Vietnam
While deep learning on graphs has gradually become one of the mainstream for mining real-world graph data, detecting anomaly nodes still remains a challenging issue. The rooting cause is the natural over-smoothing and... 详细信息
来源: 评论
Multi-view graph anomaly detection via subgraph anomaly augmentation
收藏 引用
NEUROCOMPUTING 2025年 637卷
作者: Lin, Fu Zhang, Yue Luo, Xuexiong Li, Mingkang Wang, Zitong Song, Enfeng Wuhan Univ Sch Cyber Sci & Engn Key Lab Aerosp Informat Secur & Trusted Comp Minist Educ Wuhan Hubei Peoples R China Wuhan Univ Sch Comp Sci Wuhan Hubei Peoples R China Macquarie Univ Sch Comp Sydney NSW Australia Wuhan Univ Renmin Hosp Wuhan Hubei Peoples R China
graph anomaly detection (GAD) aims to identify abnormal patterns whose structure and attributes deviate from those of the majority of nodes, and it has been widely applied in various real-world scenarios, such as soci... 详细信息
来源: 评论
Identifying local useful information for attribute graph anomaly detection
收藏 引用
NEUROCOMPUTING 2025年 617卷
作者: Xi, Penghui Cheng, Debo Lu, Guangquan Deng, Zhenyun Zhang, Guixian Zhang, Shichao Guangxi Normal Univ Guangxi Key Lab Multisource Informat Min & Secur Guilin Peoples R China Univ South Australia UniSA STEM Adelaide Australia Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu Peoples R China China Univ Min & Technol Sch Comp Sci & Technol Xuzhou Jiangsu Peoples R China
graph anomaly detection primarily relies on shallow learning methods based on feature engineering and deep learning strategies centred on autoencoder-based reconstruction. However, these methods frequently fail to har... 详细信息
来源: 评论
graph anomaly detection via Multi-Scale Reconstruction of graph Encoder-Decoder Networks
Graph Anomaly Detection via Multi-Scale Reconstruction of Gr...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Yu, Jiaqi Yang, Hong Zhang, Peng Cyberspace Institute of Advanced Technology Guangzhou University Guangzhou China
Existing unsupervised graph anomaly detection (GAD) methods can be categorized into reconstruction based methods and contrastive learning based methods. The principle of reconstruction methods is to capture anomalous ... 详细信息
来源: 评论