咨询与建议

限定检索结果

文献类型

  • 37 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 72 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 70 篇 工学
    • 66 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 12 篇 软件工程
    • 7 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 测绘科学与技术
    • 1 篇 网络空间安全
  • 7 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 6 篇 理学
    • 2 篇 数学
    • 2 篇 生物学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 统计学(可授理学、...
  • 4 篇 医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 临床医学
  • 1 篇 农学

主题

  • 72 篇 graph anomaly de...
  • 24 篇 graph neural net...
  • 14 篇 anomaly detectio...
  • 9 篇 contrastive lear...
  • 7 篇 unsupervised lea...
  • 6 篇 graph neural net...
  • 5 篇 self-supervised ...
  • 4 篇 deep learning
  • 4 篇 feature extracti...
  • 4 篇 graph representa...
  • 3 篇 representation l...
  • 3 篇 message passing
  • 3 篇 heterophily
  • 3 篇 reviews
  • 3 篇 semantics
  • 3 篇 graph embedding
  • 3 篇 data augmentatio...
  • 3 篇 training
  • 2 篇 outlier detectio...
  • 2 篇 lateral movement

机构

  • 5 篇 macquarie univ s...
  • 3 篇 tianjin univ col...
  • 2 篇 xi an jiao tong ...
  • 2 篇 wuhan univ renmi...
  • 2 篇 guangxi normal u...
  • 2 篇 wuhan univ sch c...
  • 2 篇 xi an jiao tong ...
  • 2 篇 hong kong univ s...
  • 2 篇 suny albany dept...
  • 2 篇 northwest normal...
  • 2 篇 univ elect sci &...
  • 2 篇 macquarie univ s...
  • 2 篇 intelligent game...
  • 2 篇 guilin univ elec...
  • 2 篇 natl univ def te...
  • 1 篇 ocean univ china...
  • 1 篇 leiden univ liac...
  • 1 篇 chinese acad sci...
  • 1 篇 china jiliang un...
  • 1 篇 ulsan natl inst ...

作者

  • 5 篇 wu jia
  • 5 篇 yang jian
  • 5 篇 ma xiaoxiao
  • 4 篇 wang siwei
  • 4 篇 liu xinwang
  • 3 篇 luo xuexiong
  • 3 篇 duan jingcan
  • 3 篇 akoglu leman
  • 3 篇 wang zitong
  • 3 篇 sheng quan z.
  • 2 篇 wang wenjun
  • 2 篇 pang shikang
  • 2 篇 hu jingtao
  • 2 篇 zhou qinghai
  • 2 篇 chang liang
  • 2 篇 jin hu
  • 2 篇 wu nannan
  • 2 篇 tong hanghang
  • 2 篇 zhang sai
  • 2 篇 cadena jose

语言

  • 72 篇 英文
检索条件"主题词=Graph Anomaly Detection"
72 条 记 录,以下是11-20 订阅
排序:
Rethinking Unsupervised graph anomaly detection With Deep Learning: Residuals and Objectives
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2025年 第2期37卷 881-895页
作者: Ma, Xiaoxiao Liu, Fanzhen Wu, Jia Yang, Jian Xue, Shan Sheng, Quan Z. Macquarie Univ Sch Comp Sydney NSW 2109 Australia CSIROs Data61 Sydney NSW 2015 Australia
Anomalies often occur in real-world information networks/graphs, such as malevolent users in online review networks and fake news in social media. When representing such structured network data as graphs, anomalies us... 详细信息
来源: 评论
Counterfactual Data Augmentation With Denoising Diffusion for graph anomaly detection
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2024年 第6期11卷 7555-7567页
作者: Xiao, Chunjing Pang, Shikang Xu, Xovee Li, Xuan Trajcevski, Goce Zhou, Fan Henan Univ Sch Comp & Informat Engn Kaifeng 475004 Peoples R China Henan Univ Henan Key Lab Big Data Anal & Proc Kaifeng 475004 Peoples R China Univ Elect Sci & Technol China Chengdu 610054 Sichuan Peoples R China Sichuan Univ Natl Key Lab Fundamental Sci Synthet Vis Chengdu 610065 Peoples R China Iowa State Univ Dept Elect & Comp Engn Ames IA 50011 USA
A critical aspect of graph neural networks (GNNs) is to enhance the node representations by aggregating node neighborhood information. However, when detecting anomalies, the representations of abnormal nodes are prone... 详细信息
来源: 评论
ARISE: graph anomaly detection on Attributed Networks via Substructure Awareness
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024年 第12期35卷 18172-18185页
作者: Duan, Jingcan Xiao, Bin Wang, Siwei Zhou, Haifang Liu, Xinwang Natl Univ Def Technol Coll Comp Sci & Technol Changsha 410073 Peoples R China Chongqing Univ Posts & Telecommun Dept Comp Sci & Technol Chongqing 400065 Peoples R China Intelligent Game & Decis Lab Beijing 100071 Peoples R China
Recently, graph anomaly detection on attributed networks has attracted growing attention in data mining and machine learning communities. Apart from attribute anomalies, graph anomaly detection also aims at suspicious... 详细信息
来源: 评论
Context Correlation Discrepancy Analysis for graph anomaly detection
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2025年 第1期37卷 174-187页
作者: Wang, Ruidong Xi, Liang Zhang, Fengbin Fan, Haoyi Yu, Xu Liu, Lei Yu, Shui Leung, Victor C. M. Zhejiang Normal Univ Sch Comp Sci & Technol Jinhua 321000 Peoples R China Harbin Univ Sci & Technol Sch Comp Sci & Technol Harbin 150080 Peoples R China Zhengzhou Univ Sch Comp & Artificial Intelligence Zhengzhou 450001 Peoples R China China Univ Petr East China Qingdao Inst Software Qingdao 266580 Peoples R China Xidian Univ Guangzhou Inst Technol Guangzhou 510555 Peoples R China Qilu Univ Technol Shandong Acad Sci Key Lab Comp Power Network & Informat Secur Minist Educ Jinan 250014 Peoples R China Univ Technol Sydney Sch Comp Sci Sydney NSW 2007 Australia Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Univ British Columbia Dept Elect & Comp Engn Vancouver BC V6T 1Z4 Canada
In unsupervised graph anomaly detection, existing methods usually focus on detecting outliers by learning local context information of nodes, while often ignoring the importance of global context. However, global cont... 详细信息
来源: 评论
AnomalGRN: deciphering single-cell gene regulation network with graph anomaly detection
收藏 引用
BMC BIOLOGY 2025年 第1期23卷 1-16页
作者: Zhou, Zhecheng Wei, Jinhang Liu, Mingzhe Zhuo, Linlin Fu, Xiangzheng Zou, Quan Wenzhou Univ Technol Sch Data Sci & Artificial Intelligence Wenzhou 325027 Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha 410012 Peoples R China Univ Elect Sci & Technol China Inst Fundamental & Frontier Sci Chengdu 611730 Peoples R China
BackgroundSingle-cell RNA sequencing (scRNA-seq) is now essential for cellular-level gene expression studies and deciphering complex gene regulatory mechanisms. Deep learning methods, when combined with scRNA-seq tech... 详细信息
来源: 评论
Improving Generalizability of graph anomaly detection Models via Data Augmentation
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2023年 第12期35卷 12721-12735页
作者: Zhou, Shuang Huang, Xiao Liu, Ninghao Zhou, Huachi Chung, Fu-Lai Huang, Long-Kai Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China Univ Georgia Athens GA 30602 USA Tencent AI Lab Shenzhen 518057 Guangdong Peoples R China
graph anomaly detection (GAD) has wide applications in real-world networked systems. In many scenarios, people need to identify anomalies on new (sub)graphs, but they may lack labels to train an effective detection mo... 详细信息
来源: 评论
A Comprehensive Survey on graph anomaly detection With Deep Learning
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2023年 第12期35卷 12012-12038页
作者: Ma, Xiaoxiao Wu, Jia Xue, Shan Yang, Jian Zhou, Chuan Sheng, Quan Z. Xiong, Hui Akoglu, Leman Macquarie Univ Sch Comp Sydney NSW 2109 Australia Chinese Acad Sci Acad Math & Syst Sci Beijing 100190 Peoples R China Rutgers State Univ Dept Management Sci & Informat Syst Piscataway NJ 08854 USA Carnegie Mellon Univ Heinz Coll Informat Syst & Publ Policy Pittsburgh PA 15213 USA
Anomalies are rare observations (e.g., data records or events) that deviate significantly from the others in the sample. Over the past few decades, research on anomaly mining has received increasing interests due to t... 详细信息
来源: 评论
Enhancing Multi-view Contrastive Learning for graph anomaly detection  29th
Enhancing Multi-view Contrastive Learning for Graph Anomaly ...
收藏 引用
29th International Conference on Database Systems for Advanced Applications (DASFAA)
作者: Lu, Qingcheng Wu, Nannan Zhao, Yiming Wang, Wenjun Zu, Quannan Tianjin Univ Coll Intelligence & Comp Tianjin Peoples R China Tianjin Univ Dept Management & Econ Tianjin Peoples R China
graph anomaly detection (GAD) has garnered considerable attention owing to its wide-ranging applications in real-world scenarios, including financial network and cybersecurity. Due to the difficulty associated with le... 详细信息
来源: 评论
Towards Fair graph anomaly detection: Problem, Benchmark Datasets, and Evaluation  24
Towards Fair Graph Anomaly Detection: Problem, Benchmark Dat...
收藏 引用
33rd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Neo, Neng Kai Nigel Lee, Yeon-Chang Jin, Yiqiao Kim, Sang-Wook Kumar, Srijan Georgia Inst Technol Atlanta GA 30332 USA Ulsan Natl Inst Sci & Technol UNIST Ulsan South Korea Hanyang Univ Seoul South Korea
The Fair graph anomaly detection (FairGAD) problem aims to accurately detect anomalous nodes in an input graph while avoiding biased predictions against individuals from sensitive subgroups. However, the current liter... 详细信息
来源: 评论
Unsupervised graph anomaly detection on Directed Attribute Network
Unsupervised Graph Anomaly Detection on Directed Attribute N...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Li, Haoyang Wang, Siwei Liu, Xinwang Gan, Xinbiao Natl Univ Def Technol Coll Comp Sci Changsha Peoples R China Acad Mil Sci Intelligent Game & Decis Lab Beijing 100091 Peoples R China
Attribute networks are commonly used graph structures in complex application domains. With the increasing prominence of security issues, the detection of anomalies in attributed networks has become a widely studied to... 详细信息
来源: 评论