咨询与建议

限定检索结果

文献类型

  • 37 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 72 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 70 篇 工学
    • 66 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 12 篇 软件工程
    • 7 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 测绘科学与技术
    • 1 篇 网络空间安全
  • 7 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 6 篇 理学
    • 2 篇 数学
    • 2 篇 生物学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 统计学(可授理学、...
  • 4 篇 医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 临床医学
  • 1 篇 农学

主题

  • 72 篇 graph anomaly de...
  • 24 篇 graph neural net...
  • 14 篇 anomaly detectio...
  • 9 篇 contrastive lear...
  • 7 篇 unsupervised lea...
  • 6 篇 graph neural net...
  • 5 篇 self-supervised ...
  • 4 篇 deep learning
  • 4 篇 feature extracti...
  • 4 篇 graph representa...
  • 3 篇 representation l...
  • 3 篇 message passing
  • 3 篇 heterophily
  • 3 篇 reviews
  • 3 篇 semantics
  • 3 篇 graph embedding
  • 3 篇 data augmentatio...
  • 3 篇 training
  • 2 篇 outlier detectio...
  • 2 篇 lateral movement

机构

  • 5 篇 macquarie univ s...
  • 3 篇 tianjin univ col...
  • 2 篇 xi an jiao tong ...
  • 2 篇 wuhan univ renmi...
  • 2 篇 guangxi normal u...
  • 2 篇 wuhan univ sch c...
  • 2 篇 xi an jiao tong ...
  • 2 篇 hong kong univ s...
  • 2 篇 suny albany dept...
  • 2 篇 northwest normal...
  • 2 篇 univ elect sci &...
  • 2 篇 macquarie univ s...
  • 2 篇 intelligent game...
  • 2 篇 guilin univ elec...
  • 2 篇 natl univ def te...
  • 1 篇 ocean univ china...
  • 1 篇 leiden univ liac...
  • 1 篇 chinese acad sci...
  • 1 篇 china jiliang un...
  • 1 篇 ulsan natl inst ...

作者

  • 5 篇 wu jia
  • 5 篇 yang jian
  • 5 篇 ma xiaoxiao
  • 4 篇 wang siwei
  • 4 篇 liu xinwang
  • 3 篇 luo xuexiong
  • 3 篇 duan jingcan
  • 3 篇 akoglu leman
  • 3 篇 wang zitong
  • 3 篇 sheng quan z.
  • 2 篇 wang wenjun
  • 2 篇 pang shikang
  • 2 篇 hu jingtao
  • 2 篇 zhou qinghai
  • 2 篇 chang liang
  • 2 篇 jin hu
  • 2 篇 wu nannan
  • 2 篇 tong hanghang
  • 2 篇 zhang sai
  • 2 篇 cadena jose

语言

  • 72 篇 英文
检索条件"主题词=Graph Anomaly Detection"
72 条 记 录,以下是21-30 订阅
排序:
Beyond Homophily: Attributed graph anomaly detection via Heterophily-Aware Contrastive Learning Network  33rd
Beyond Homophily: Attributed Graph Anomaly Detection via Het...
收藏 引用
33rd International Conference on Artificial Neural Networks and Machine Learning (ICANN)
作者: Jin, Wangyu Ma, Huifang Zhang, Yingyue Li, Zhixin Chang, Liang Northwest Normal Univ Coll Comp Sci & Engn Lanzhou Gansu Peoples R China Guangxi Normal Univ Key Lab Educ Blockchain & Intelligent Technol Minist Educ Guilin Guangxi Peoples R China Guilin Univ Elect Technol Sch Comp Sci & Informat Secur Guilin Guangxi Peoples R China
Attributed graph anomaly detection aims to identify abnormal nodes that significantly differ from most nodes in terms of their attribute or structure. Recent graph contrastive learning methods, which follow an augment... 详细信息
来源: 评论
TransGAD: A Transformer-Based Autoencoder for graph anomaly detection  29th
TransGAD: A Transformer-Based Autoencoder for Graph Anomaly ...
收藏 引用
29th International Conference on Database Systems for Advanced Applications (DASFAA)
作者: Guo, Zehao Wu, Nannan Zhao, Yiming Wang, Wenjun Tianjin Univ Coll Intelligence & Comp Tianjin Peoples R China
graph anomaly detection, aimed at identifying anomalous patterns that significantly differ from other nodes, has drawn widespread attention in recent years. Due to the complex topological structures and attribute info... 详细信息
来源: 评论
A Synergistic Approach for graph anomaly detection With Pattern Mining and Feature Learning
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022年 第6期33卷 2393-2405页
作者: Zhao, Tong Jiang, Tianwen Shah, Neil Jiang, Meng Univ Notre Dame Dept Comp Sci & Engn Notre Dame IN 46556 USA Harbin Inst Technol Res Ctr Social Comp & Informat Retrieval Harbin 150001 Peoples R China Snap Inc Snap Res Seattle WA 98121 USA
Detecting anomalies on graph data has two types of methods. One is pattern mining that discovers strange structures globally such as quasi-cliques, bipartite cores, or dense blocks in the graph's adjacency matrix.... 详细信息
来源: 评论
Normality Learning-based graph anomaly detection via Multi-Scale Contrastive Learning  23
Normality Learning-based Graph Anomaly Detection via Multi-S...
收藏 引用
31st ACM International Conference on Multimedia (MM)
作者: Duan, Jingcan Zhang, Pei Wang, Siwei Hu, Jingtao Jin, Hu Zhang, Jiaxin Zhou, Haifang Liu, Xinwang Natl Univ Def Technol Changsha Hunan Peoples R China Intelligent Game & Decis Lab Beijing Peoples R China
graph anomaly detection (GAD) has attracted increasing attention in machine learning and data mining. Recent works have mainly focused on how to capture richer information to improve the quality of node embeddings for... 详细信息
来源: 评论
GADAL: An Active Learning Framework for graph anomaly detection  6th
GADAL: An Active Learning Framework for Graph Anomaly Detect...
收藏 引用
6th Asia Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data (APWeb-WAIM)
作者: Chang, Wenjing Yu, Jianjun Zhou, Xiaojun Chinese Acad Sci Comp Network Informat Ctr Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China
graph Neural Networks (GNNs) have been widely used in graph-based anomaly detection tasks, and these methods require a sufficient amount of labeled data to achieve satisfactory performance. However, the high cost for ... 详细信息
来源: 评论
Reinforcement Neighborhood Selection for Unsupervised graph anomaly detection  23
Reinforcement Neighborhood Selection for Unsupervised Graph ...
收藏 引用
23rd IEEE International Conference on Data Mining (IEEE ICDM)
作者: Beil, Yuanchen Zhoult, Sheng Tan, Qiaoyu Xu, Hao Chen, Hao Li, Zhao But, Jiajun Zhejiang Univ Zhejiang Prov Key Lab Serv Robot Hangzhou Peoples R China New York Univ Shanghai Shanghai Peoples R China Unaffiliated Beijing Peoples R China Hong Kong Polytechn Univ Hong Kong Peoples R China
Unsupervised graph anomaly detection is crucial for various practical applications as it aims to identify anomalies in a graph that exhibit rare patterns deviating significantly from the majority of nodes. Recent adva... 详细信息
来源: 评论
Rethinking graph anomaly detection: A self-supervised Group Discrimination paradigm with Structure-Aware
Rethinking graph anomaly detection: A self-supervised Group ...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yan, Junyi Zuo, Enguang Chen, Chen Chen, Cheng Zhong, Jie Li, Tianle Lv, Xiaoyi Xinjiang Univ Coll Software Urumqi Xinjiang Peoples R China Xinjiang Univ Coll Informat Sci & Engn Urumqi Xinjiang Peoples R China
Structural anomalies are the core problem in graph anomaly detection. However, the current mainstream self-supervised graph anomaly detection models do not directly model structural anomalies and their expensive time ... 详细信息
来源: 评论
Few-shot Message-Enhanced Contrastive Learning for graph anomaly detection  29
Few-shot Message-Enhanced Contrastive Learning for Graph Ano...
收藏 引用
29th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2023
作者: Xu, Fan Wang, Nan Wen, Xuezhi Gao, Meiqi Guo, Chaoqun Zhao, Xibin University of Science and Technology of China School of Computer Science and Technology Anhui China Beijing Jiaotong University School of Software Engineering Beijing China Tsinghua University School of Software Engineering Beijing China
graph anomaly detection plays a crucial role in identifying exceptional instances in graph data that deviate significantly from the majority. It has gained substantial attention in various domains of information secur... 详细信息
来源: 评论
Improving graph Convolutional Network with Learnable Edge Weights and Edge-Node Co-Embedding for graph anomaly detection
收藏 引用
SENSORS 2024年 第8期24卷 2591页
作者: Tan, Xiao Yang, Jianfeng Zhao, Zhengang Xiao, Jinsheng Li, Chengwang Wuhan Univ Sch Elect Informat Wuhan 430072 Peoples R China Univ Sci & Technol China Sch Software Engn Suzhou 215123 Jiangsu Peoples R China China Jiliang Univ Coll Sci Hangzhou 310018 Peoples R China
The era of Industry 4.0 is gradually transforming our society into a data-driven one, which can help us uncover valuable information from accumulated data, thereby improving the level of social governance. The detecti... 详细信息
来源: 评论
Multi-view discriminative edge heterophily contrastive learning network for attributed graph anomaly detection
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 第PartB期255卷
作者: Jin, Wangyu Ma, Huifang Zhang, Yingyue Li, Zhixin Chang, Liang Northwest Normal Univ Coll Comp Sci & Engn Lanzhou 730070 Gansu Peoples R China Guangxi Normal Univ Key Lab Educ Blockchain & Intelligent Technol Minist Educ Guilin 541004 Guangxi Peoples R China Guilin Univ Elect Technol Sch Comp Sci & Informat Secur Guilin 541004 Guangxi Peoples R China
Attributed graph anomaly detection aims to identify abnormal nodes that significantly differ from most nodes in terms of their attribute or structure. Recent graph contrastive learning methods, which follow an augment... 详细信息
来源: 评论