咨询与建议

限定检索结果

文献类型

  • 37 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 72 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 70 篇 工学
    • 66 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 12 篇 软件工程
    • 7 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 测绘科学与技术
    • 1 篇 网络空间安全
  • 7 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 6 篇 理学
    • 2 篇 数学
    • 2 篇 生物学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 统计学(可授理学、...
  • 4 篇 医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 临床医学
  • 1 篇 农学

主题

  • 72 篇 graph anomaly de...
  • 24 篇 graph neural net...
  • 14 篇 anomaly detectio...
  • 9 篇 contrastive lear...
  • 7 篇 unsupervised lea...
  • 6 篇 graph neural net...
  • 5 篇 self-supervised ...
  • 4 篇 deep learning
  • 4 篇 feature extracti...
  • 4 篇 graph representa...
  • 3 篇 representation l...
  • 3 篇 message passing
  • 3 篇 heterophily
  • 3 篇 reviews
  • 3 篇 semantics
  • 3 篇 graph embedding
  • 3 篇 data augmentatio...
  • 3 篇 training
  • 2 篇 outlier detectio...
  • 2 篇 lateral movement

机构

  • 5 篇 macquarie univ s...
  • 3 篇 tianjin univ col...
  • 2 篇 xi an jiao tong ...
  • 2 篇 wuhan univ renmi...
  • 2 篇 guangxi normal u...
  • 2 篇 wuhan univ sch c...
  • 2 篇 xi an jiao tong ...
  • 2 篇 hong kong univ s...
  • 2 篇 suny albany dept...
  • 2 篇 northwest normal...
  • 2 篇 univ elect sci &...
  • 2 篇 macquarie univ s...
  • 2 篇 intelligent game...
  • 2 篇 guilin univ elec...
  • 2 篇 natl univ def te...
  • 1 篇 ocean univ china...
  • 1 篇 leiden univ liac...
  • 1 篇 chinese acad sci...
  • 1 篇 china jiliang un...
  • 1 篇 ulsan natl inst ...

作者

  • 5 篇 wu jia
  • 5 篇 yang jian
  • 5 篇 ma xiaoxiao
  • 4 篇 wang siwei
  • 4 篇 liu xinwang
  • 3 篇 luo xuexiong
  • 3 篇 duan jingcan
  • 3 篇 akoglu leman
  • 3 篇 wang zitong
  • 3 篇 sheng quan z.
  • 2 篇 wang wenjun
  • 2 篇 pang shikang
  • 2 篇 hu jingtao
  • 2 篇 zhou qinghai
  • 2 篇 chang liang
  • 2 篇 jin hu
  • 2 篇 wu nannan
  • 2 篇 tong hanghang
  • 2 篇 zhang sai
  • 2 篇 cadena jose

语言

  • 72 篇 英文
检索条件"主题词=Graph Anomaly Detection"
72 条 记 录,以下是31-40 订阅
排序:
Cross-Domain graph Level anomaly detection
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2024年 第12期36卷 7839-7850页
作者: Li, Zhong Liang, Sheng Shi, Jiayang van Leeuwen, Matthijs Leiden Univ LIACS NL-2311 EZ Leiden Netherlands Ludwig Maximilians Univ Munchen CIS D-80539 Munich Germany
Existing graph level anomaly detection methods are predominantly unsupervised due to high costs for obtaining labels, yielding sub-optimal detection accuracy when compared to supervised methods. Moreover, they heavily... 详细信息
来源: 评论
Imbalanced graph-Level anomaly detection via Counterfactual Augmentation and Feature Learning  24
Imbalanced Graph-Level Anomaly Detection via Counterfactual ...
收藏 引用
36th International Conference on Scientific and Statistical Database Management (SSDBM)
作者: Wang, Zitong Luo, Xuexiong Song, Enfeng Bai, Qiuqing Lint, Fu Wuhan Univ Sch Cyber Sci & Engn Wuhan Hubei Peoples R China Macquarie Univ Sch Comp Sydney NSW Australia Wuhan Univ Renmin Hosp Wuhan Hubei Peoples R China Wuhan Univ Sch Comp Sci Sch Cyber Sci & Engn Wuhan Hubei Peoples R China
graph-level anomaly detection (GLAD) has already gained significant importance and has become a popular field of study, attracting considerable attention across numerous downstream works. The core focus of this domain... 详细信息
来源: 评论
Motif-Consistent Counterfactuals with Adversarial Refinement for graph-Level anomaly detection  24
Motif-Consistent Counterfactuals with Adversarial Refinement...
收藏 引用
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
作者: Xiao, Chunjing Pang, Shikang Tai, Wenxin Huang, Yanlong Trajcevski, Goce Zhou, Fan Henan Univ Kaifeng Peoples R China Univ Elect Sci & Technol China Chengdu Sichuan Peoples R China Iowa State Univ Ames IA USA
graph-level anomaly detection is significant in diverse domains. To improve detection performance, counterfactual graphs have been exploited to benefit the generalization capacity by learning causal relations. Most ex... 详细信息
来源: 评论
Towards graph-level anomaly detection via Deep Evolutionary Mapping  23
Towards Graph-level Anomaly Detection via Deep Evolutionary ...
收藏 引用
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
作者: Ma, Xiaoxiao Wu, Jia Yang, Jian Sheng, Quan Z. Macquarie Univ Sch Comp Sydney NSW Australia
graph-level anomaly detection aims at capturing anomalous individual graphs in a graph set. Due to its significance in various real-world application fields, e.g., identifying rare molecules in chemistry and detecting... 详细信息
来源: 评论
Higher-order Enhanced Contrastive-based graph anomaly detection Without graph Augmentation
收藏 引用
PATTERN RECOGNITION 2025年 167卷
作者: Hu, Jingtao Wang, Siwei Duan, Jingcan Jin, Hu Liu, Xinwang Zhu, En Acad Mil Sci Beijing 100091 Peoples R China Unit 31592 PLA Beijing 100041 Peoples R China Natl Univ Def Technol Changsha 410073 Hunan Peoples R China
graph anomaly detection (GAD) has been widely applied in various attributed graph data mining domains, such as financial fraud and academic citation networks. Its goal is to detect instances in graph data significantl... 详细信息
来源: 评论
graph anomaly detection Based on Steiner Connectivity and Density
收藏 引用
PROCEEDINGS OF THE IEEE 2018年 第5期106卷 829-845页
作者: Cadena, Jose Chen, Feng Vullikanti, Anil Virginia Tech Dept Comp Sci Blacksburg VA 24060 USA Virginia Tech Biocomplex Inst Blacksburg VA 24060 USA Lawrence Livermore Natl Lab Machine Learning Grp Livermore CA 94550 USA SUNY Albany Dept Comp Sci Albany NY 12222 USA
Detecting "hotspots" and "anomalies" is a recurring problem with a wide range of applications, such as social network analysis, epidemiology, finance, and biosurveillance, among others. Networks ar... 详细信息
来源: 评论
A simple graph embedding for anomaly detection in a stream of heterogeneous labeled graphs
收藏 引用
PATTERN RECOGNITION 2021年 112卷 107746-107746页
作者: Kiouche, Abd Errahmane Lagraa, Sofiane Amrouche, Karima Seba, Hamida Univ Lyon 1 Univ Lyon CNRS LIRISUMR5205 F-69622 Lyon France Ecole Natl Super Informat Http Www Esi Dz Lab Commun Syst Informat LCSI BP 68M Oued Smar 16309 Alger Algeria Univ Luxembourg SnT Interdisciplinary Ctr Secur Reliabil & Trust Luxembourg Luxembourg
In this work, we propose a new approach to detect anomalous graphs in a stream of directed and labeled heterogeneous edges. The stream consists of a sequence of edges derived from different graphs. Each of these dynam... 详细信息
来源: 评论
When bipartite graph learning meets anomaly detection in attributed networks: Understand abnormalities from each attribute
收藏 引用
NEURAL NETWORKS 2025年 185卷 107194页
作者: Peng, Zhen Wang, Yunfan Lin, Qika Dong, Bo Shen, Chao Xi An Jiao Tong Univ Sch Comp Sci & Technol Xian Peoples R China Natl Univ Singapore Saw Swee Hock Sch Publ Hlth Singapore Singapore Xi An Jiao Tong Univ Sch Distance Educ Xian Peoples R China Xi An Jiao Tong Univ Sch Cyber Sci & Engn Xian Peoples R China Univ Virginia Dept Comp Sci Charlottesville VA USA
Detecting anomalies in attributed networks has become a subject of interest in both academia and industry due to its wide spectrum of applications. Although most existing methods achieve desirable performance by the m... 详细信息
来源: 评论
anomaly detection Over Multi-Relational graphs Using graph Structure Learning and Multi-Scale Meta-Path graph Aggregation
收藏 引用
IEEE ACCESS 2025年 13卷 60303-60316页
作者: Zhang, Chi Jeong, Junho Jung, Jin-Woo Dongguk Univ Dept Comp Sci & Engn Seoul 04620 South Korea
graph Neural Networks (GNNs) have recently achieved remarkable success in various learning tasks involving graph-structured data. However, their application to multi-relational graph anomaly detection problems on real... 详细信息
来源: 评论
Comparing Hyperbolic graph Embedding models on anomaly detection for Cybersecurity  24
Comparing Hyperbolic Graph Embedding models on Anomaly Detec...
收藏 引用
19th International Conference on Availability, Reliability, and Security (ARES)
作者: Miliani, Mohamed Yacine Touahria Sadat, Souhail Abdelmouaiz Haddad, Mohammed Ecole Natl Super Informat Algeries Algeria Univ Lyon UCBL INSA Lyon CNRSLIRISUMR5205 Villeurbanne France
graph-based anomaly detection has emerged as a powerful tool in cybersecurity for identifying malicious activities within computer systems and networks. While existing approaches often rely on embedding graphs in Eucl... 详细信息
来源: 评论