咨询与建议

限定检索结果

文献类型

  • 37 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 72 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 70 篇 工学
    • 66 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 12 篇 软件工程
    • 7 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 测绘科学与技术
    • 1 篇 网络空间安全
  • 7 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 6 篇 理学
    • 2 篇 数学
    • 2 篇 生物学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 统计学(可授理学、...
  • 4 篇 医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 临床医学
  • 1 篇 农学

主题

  • 72 篇 graph anomaly de...
  • 24 篇 graph neural net...
  • 14 篇 anomaly detectio...
  • 9 篇 contrastive lear...
  • 7 篇 unsupervised lea...
  • 6 篇 graph neural net...
  • 5 篇 self-supervised ...
  • 4 篇 deep learning
  • 4 篇 feature extracti...
  • 4 篇 graph representa...
  • 3 篇 representation l...
  • 3 篇 message passing
  • 3 篇 heterophily
  • 3 篇 reviews
  • 3 篇 semantics
  • 3 篇 graph embedding
  • 3 篇 data augmentatio...
  • 3 篇 training
  • 2 篇 outlier detectio...
  • 2 篇 lateral movement

机构

  • 5 篇 macquarie univ s...
  • 3 篇 tianjin univ col...
  • 2 篇 xi an jiao tong ...
  • 2 篇 wuhan univ renmi...
  • 2 篇 guangxi normal u...
  • 2 篇 wuhan univ sch c...
  • 2 篇 xi an jiao tong ...
  • 2 篇 hong kong univ s...
  • 2 篇 suny albany dept...
  • 2 篇 northwest normal...
  • 2 篇 univ elect sci &...
  • 2 篇 macquarie univ s...
  • 2 篇 intelligent game...
  • 2 篇 guilin univ elec...
  • 2 篇 natl univ def te...
  • 1 篇 ocean univ china...
  • 1 篇 leiden univ liac...
  • 1 篇 chinese acad sci...
  • 1 篇 china jiliang un...
  • 1 篇 ulsan natl inst ...

作者

  • 5 篇 wu jia
  • 5 篇 yang jian
  • 5 篇 ma xiaoxiao
  • 4 篇 wang siwei
  • 4 篇 liu xinwang
  • 3 篇 luo xuexiong
  • 3 篇 duan jingcan
  • 3 篇 akoglu leman
  • 3 篇 wang zitong
  • 3 篇 sheng quan z.
  • 2 篇 wang wenjun
  • 2 篇 pang shikang
  • 2 篇 hu jingtao
  • 2 篇 zhou qinghai
  • 2 篇 chang liang
  • 2 篇 jin hu
  • 2 篇 wu nannan
  • 2 篇 tong hanghang
  • 2 篇 zhang sai
  • 2 篇 cadena jose

语言

  • 72 篇 英文
检索条件"主题词=Graph Anomaly Detection"
72 条 记 录,以下是41-50 订阅
排序:
A Multiscale anomaly detection Framework for AIS Trajectories via Heat graph Laplacian Diffusion  32
A Multiscale Anomaly Detection Framework for AIS Trajectorie...
收藏 引用
32nd European Signal Processing Conference (EUSIPCO)
作者: Leon-Lopez, Kareth Fabre, Serge Manzoni, Fabio Mirambell, Laurent Tourneret, Jean-Yves Univ Toulouse IRIT ENSEEIHT TeSA Toulouse France TeSA Lab Toulouse France Hensoldt Nexeya France Toulouse France
The monitoring of abnormal ship behavior is an important task for maritime surveillance for which the automatic identification system (AIS) has been widely exploited. Several works have proposed graph-based anomaly de... 详细信息
来源: 评论
OCGATL: One-Class graph Attention Networks with Transformation Learning for anomaly detection for Argo Data  5th
OCGATL: One-Class Graph Attention Networks with Transformati...
收藏 引用
5th China Conference on Spatial Data and Intelligence (SpatialDI)
作者: Jiang, Yongguo Liu, Hua Wang, Jiaxing Zhai, Guangda Ocean Univ China Fac Informat Sci & Engn Qingdao 266000 Shandong Peoples R China
As the typical representative of marine big data, the Argo plan conducts high-quality and scientific anomaly detection on Argo data, which is an important step in ocean science big data. However, in classical anomaly ... 详细信息
来源: 评论
graph Local Homophily Network for anomaly detection  24
Graph Local Homophily Network for Anomaly Detection
收藏 引用
33rd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Guo, Ronghui Zou, Minghui Zhang, Sai Zhang, Xiaowang Yu, Zhizhi Feng, Zhiyong Tianjin Univ Coll Intelligence & Comp Tianjin Peoples R China
In graph anomaly detection (GAD), the fact that anomalous nodes usually exhibit high heterophily, while most graph Neural Networks (GNNs) have homophily assumptions, leads to poor performance. Many studies have attemp... 详细信息
来源: 评论
Multi-representations Space Separation based graph-level anomaly-aware detection  23
Multi-representations Space Separation based Graph-level Ano...
收藏 引用
35th International Conference on Scientific and Statistical Database Management, (SSDBM)
作者: Lin, Fu Gong, Haonan Li, Mingkang Wang, Zitong Zhang, Yue Luo, Xuexiong Wuhan Univ Sch Comp Sci Wuhan Hubei Peoples R China Macquarie Univ Sch Comp Sydney NSW Australia
graph structure patterns are widely used to model different area data recently. How to detect anomalous graph information on these graph data has become a popular research problem. The objective of this research is ce... 详细信息
来源: 评论
anomaly detection with dual-channel heterogeneous graph based on hypersphere learning
收藏 引用
INFORMATION SCIENCES 2024年 681卷
作者: Li, Qing Wu, Guanzhong Ni, Hang You, Tao Northwestern Polytech Univ Sch Comp Sci Xian 710072 Peoples R China
graph anomaly detection is essential for identifying irregular patterns and outliers within complex network structures in domains like social networks, cybersecurity, finance, and transportation systems. It helps dete... 详细信息
来源: 评论
One-class graph neural networks for anomaly detection in attributed networks
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2021年 第18期33卷 12073-12085页
作者: Wang, Xuhong Jin, Baihong Du, Ying Cui, Ping Tan, Yingshui Yang, Yupu Shanghai Jiao Tong Univ Minist Educ Key Lab Syst Control & Informat Proc Sch Elect Informat & Elect Engn Shanghai Peoples R China Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94720 USA
Nowadays, graph-structured data are increasingly used to model complex systems. Meanwhile, detecting anomalies from graph has become a vital research problem of pressing societal concerns. anomaly detection is an unsu... 详细信息
来源: 评论
graph Based Approach to Real-Time Metro Passenger Flow anomaly detection  37
Graph Based Approach to Real-Time Metro Passenger Flow Anoma...
收藏 引用
37th IEEE International Conference on Data Engineering (IEEE ICDE)
作者: Zhang, Weiqi Hong Kong Univ Sci & Technol Hong Kong Peoples R China
Real-time anomaly detection of passenger flows in the metro system is very important to maintain the URT system's normal operation and ensure passengers' safety. This paper proposes a novel abnormal passenger ... 详细信息
来源: 评论
Detecting malicious IoT network communication through graph Neural Networks in real-world conditions
收藏 引用
PATTERN RECOGNITION LETTERS 2025年 189卷 92-98页
作者: Carletti, Vincenzo Foggia, Pasquale Rosa, Francesco Vento, Mario Univ Salerno Dept Informat Engn Elect Engn & Appl Math DIEM Salerno Italy Natl Res Council CNR Rome Italy
Internet of Things (IoT) devices are increasingly permeating homes, industries, and many other environments. The need for robust security measures in IoT networks has never been more critical, since they are becoming ... 详细信息
来源: 评论
Multiknowledge and LLM-Inspired Heterogeneous graph Neural Network for Fake News detection
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2025年 第2期12卷 682-694页
作者: Xie, Bingbing Ma, Xiaoxiao Shan, Xue Beheshti, Amin Yang, Jian Fan, Hao Wu, Jia Wuhan Univ Sch Informat Management Wuhan Peoples R China Macquarie Univ Sch Comp Sydney NSW 2019 Australia Macquarie Univ Sch Comp Sydney NSW 2019 Australia
The widespread diffusion of fake news has become a critical problem on dynamic social media worldwide, which requires effective strategies for fake news detection to alleviate its hazardous consequences for society. H... 详细信息
来源: 评论
An Improved Reconstruction-Based Multiattribute Contrastive Learning for Digital-Twin-Enabled Industrial System
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2025年 第4期12卷 3670-3679页
作者: Yang, Banglie Zhu, Linyu Dai, Cheng Garg, Sahil Kaddoum, Georges Sichuan Univ Coll Comp Chengdu 610017 Peoples R China Ecole Technol Super Elect Engn Dept Montreal PQ H3C 1K3 Canada Chitkara Univ Chitkara Univ Inst Engn & Technol Ctr Res Impact & Outcome Rajpura 140401 India Lebanese Amer Univ Artificial Intelligence & Cyber Syst Res Ctr Beirut 03797 Lebanon
Digital twin (DT) is a promising technology for responding to Industry 4.0 and realizing comprehensive automation and virtualization. In the Web3.0-powered 5G/6G era, the expansion of the industrial data and closer in... 详细信息
来源: 评论