咨询与建议

限定检索结果

文献类型

  • 78 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 112 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 99 篇 工学
    • 82 篇 计算机科学与技术...
    • 36 篇 电气工程
    • 8 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 测绘科学与技术
    • 3 篇 生物工程
    • 2 篇 建筑学
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
  • 27 篇 理学
    • 17 篇 生物学
    • 6 篇 数学
    • 4 篇 地球物理学
    • 2 篇 物理学
    • 2 篇 地理学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 地质学
  • 15 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 历史学
    • 1 篇 考古学

主题

  • 112 篇 graph autoencode...
  • 12 篇 graph neural net...
  • 11 篇 graph neural net...
  • 9 篇 deep learning
  • 9 篇 graph clustering
  • 9 篇 graph representa...
  • 9 篇 graph convolutio...
  • 7 篇 link prediction
  • 6 篇 self-supervised ...
  • 5 篇 community detect...
  • 5 篇 data models
  • 4 篇 representation l...
  • 4 篇 graph attention ...
  • 4 篇 task analysis
  • 4 篇 anomaly detectio...
  • 4 篇 contrastive lear...
  • 4 篇 graph embedding
  • 4 篇 network embeddin...
  • 4 篇 adversarial trai...
  • 3 篇 fault diagnosis

机构

  • 4 篇 hunan univ coll ...
  • 3 篇 anhui univ sch a...
  • 3 篇 anhui univ sch c...
  • 3 篇 anhui univ sch i...
  • 2 篇 hefei comprehens...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 2 篇 shandong normal ...
  • 2 篇 east china jiaot...
  • 2 篇 tennessee techno...
  • 2 篇 xinjiang univ co...
  • 2 篇 hunan normal uni...
  • 2 篇 nankai univ coll...
  • 2 篇 qufu normal univ...
  • 2 篇 south china norm...
  • 1 篇 lebanese amer un...
  • 1 篇 east china univ ...
  • 1 篇 florida atlantic...
  • 1 篇 univ south china...
  • 1 篇 univ cambridge d...

作者

  • 4 篇 pan shirui
  • 4 篇 long guodong
  • 3 篇 ting chee-ming
  • 3 篇 ding zhuanlian
  • 3 篇 jiang jing
  • 3 篇 ombao hernando
  • 3 篇 phan raphael c. ...
  • 3 篇 sun dengdi
  • 3 篇 noman fuad
  • 2 篇 wang shudong
  • 2 篇 li dashuang
  • 2 篇 luo jiawei
  • 2 篇 wang juan
  • 2 篇 zhang yuanyuan
  • 2 篇 atat rachad
  • 2 篇 fu xiangzheng
  • 2 篇 hanachi refka
  • 2 篇 zheng chun-hou
  • 2 篇 davis katherine ...
  • 2 篇 guan renxiang

语言

  • 111 篇 英文
  • 1 篇 其他
检索条件"主题词=Graph Autoencoder"
112 条 记 录,以下是91-100 订阅
排序:
Temporal network embedding using graph attention network
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2022年 第1期8卷 13-27页
作者: Mohan, Anuraj Pramod, K., V Cochin Univ Sci & Technol Dept Comp Applicat Artificial Intelligence Lab Cochin 682022 Kerala India Cochin Univ Sci & Technol Dept Comp Applicat Cochin 682022 Kerala India
graph convolutional network (GCN) has made remarkable progress in learning good representations from graph-structured data. The layer-wise propagation rule of conventional GCN is designed in such a way that the featur... 详细信息
来源: 评论
Fusion of multi-source relationships and topology to infer lncRNA-protein interactions
收藏 引用
MOLECULAR THERAPY NUCLEIC ACIDS 2024年 第2期35卷 102187页
作者: Zhang, Xinyu Liu, Mingzhe Li, Zhen Zhuo, Linlin Fu, Xiangzheng Zou, Quan Wenzhou Univ Technol Sch Data Sci & Artificial Intelligence Wenzhou 325027 Peoples R China Guangzhou Univ Inst Computat Sci & Technol Guangzhou 510000 Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha 410012 Peoples R China Univ Elect Sci & Technol China Inst Fundamental & Frontier Sci Chengdu 611730 Peoples R China
Long non -coding RNAs (lncRNAs) are important factors involved in biological regulatory networks. Accurately predicting lncRNA-protein interactions (LPIs) is vital for clarifying lncRNA ' s functions and pathogeni... 详细信息
来源: 评论
MSLTE: multiple self-supervised learning tasks for enhancing EEG emotion recognition
收藏 引用
JOURNAL OF NEURAL ENGINEERING 2024年 第2期21卷 024003-024003页
作者: Li, Guangqiang Chen, Ning Niu, Yixiang Xu, Zhangyong Dong, Yuxuan Jin, Jing Zhu, Hongqin East China Univ Sci & Technol Sch Informat Sci & Engn Shanghai 200237 Peoples R China
Objective. The instability of the EEG acquisition devices may lead to information loss in the channels or frequency bands of the collected EEG. This phenomenon may be ignored in available models, which leads to the ov... 详细信息
来源: 评论
Predicting abiotic stress-responsive miRNA in plants based on multi-source features fusion and graph neural network
收藏 引用
PLANT METHODS 2024年 第1期20卷 33页
作者: Chang, Liming Jin, Xiu Rao, Yuan Zhang, Xiaodan Anhui Agr Univ Coll Informat & Artificial Intelligence Hefei 230036 Peoples R China Anhui Agr Univ Anhui Prov Key Lab Smart Agr Technol & Equipment Hefei 230036 Peoples R China
BackgroundMore and more studies show that miRNA plays a crucial role in plants' response to different abiotic stresses. However, traditional experimental methods are often expensive and inefficient, so it is impor... 详细信息
来源: 评论
LEARNING AND GENERATING SPATIAL CONCEPTS OF MODERNIST ARCHITECTURE VIA graph MACHINE LEARNING  29th
LEARNING AND GENERATING SPATIAL CONCEPTS OF MODERNIST ARCHIT...
收藏 引用
29th International Conference of the Association-for-Computer-Aided-Architectural-Design-Research-in-Asia (CAADRIA)
作者: Bauscher, Erik Dai, Anni Elshani, Diellza Wortmann, Thomas Univ Stuttgart Chair Comp Architecture Inst Computat Design & Construct Stuttgart Germany
This project showcases a use case away from most other research in the field of generative AI in architecture. We present a workflow to generate new, three-dimensional spatial configurations of buildings by sampling t... 详细信息
来源: 评论
Enhancing Heterophilic graph Neural Network Performance through Label Propagation in K-Nearest Neighbor graphs
Enhancing Heterophilic Graph Neural Network Performance thro...
收藏 引用
International Conference on Big Data and Smart Computing (BigComp)
作者: Park, Hyun Seok Park, Ha-Myung Kookmin Univ Seoul South Korea
How can we exploit Label Propagation (LP) to improve the performance of GNN models on heterophilic graphs? graph Neural Network (GNN) models have received a lot of attention as a powerful deep learning technology that... 详细信息
来源: 评论
Enhancing drug repurposing on graphs by integrating drug molecular structure as feature  36
Enhancing drug repurposing on graphs by integrating drug mol...
收藏 引用
36th IEEE International Symposium on Computer-Based Medical Systems (CBMS)
作者: Ayilso-Munoz, Adrian Prieto-Santamaria, Lucia Alverez-Perez, Andrea Otero-Carrasco, Beldn Serrano, Emilio Rodriguez-Gonzalez, Alejandro Univ Politecn Madrid ETS Ingenieros Informat Madrid Spain Univ Politecn Madrid Ctr Tecnol Biorned Madrid Spain
Drug repurposing has become increasingly important, particularly in light of the COVID-19 pandemic. This process involves identifying new therapeutic uses for existing drugs, which can significantly reduce the cost, r... 详细信息
来源: 评论
GAE- ISUMM: Unsupervised graph-based Summarization for Indian Languages
GAE- ISUMM: Unsupervised Graph-based Summarization for India...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Vakada, Lakshmi Sireesha Ch, Anudeep Marreddy, Mounika Oota, Subba Reddy Mamidi, Radhika IIIT Hyderabad Hyderabad Telangana India Inria Bordeaux Bordeaux France
Document summarization aims to create a precise and coherent summary of a text document. Many deep learning summarization models are developed mainly for English, often requiring a large training corpus and efficient ... 详细信息
来源: 评论
MinerFinder: A GAE-LSTM method for predicting location of miners in underground  22
MinerFinder: A GAE-LSTM method for predicting location of mi...
收藏 引用
30th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL GIS)
作者: Goyal, Abhay Madria, Sanjay Frimpong, Samuel Missouri S&T Dept CS Rolla MO 65409 USA
Recent reports by the Mine Safety and Health Administration suggest that several injuries and fatalities could be attributed to the inability to accurately locate miners in case of disasters. Since underground mines h... 详细信息
来源: 评论
An Improved graph Convolutional Neural Network based on graph Auto-encoder  16
An Improved Graph Convolutional Neural Network based on Grap...
收藏 引用
16th International Conference on Computer and Automation Engineering (ICCAE)
作者: Wang, Dongqi Du, Tianqi Liu, Zhongwu Chen, Dongming Ren, Tao Northeastern Univ Software Coll Shenyang Peoples R China
graph Convolutional Neural Networks (GCN) is a rapidly advancing deep learning algorithm for learning graph representations. One limitation of GCN is that it cannot guarantee optimal low-pass characteristics, thus str... 详细信息
来源: 评论