咨询与建议

限定检索结果

文献类型

  • 77 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 111 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 99 篇 工学
    • 83 篇 计算机科学与技术...
    • 36 篇 电气工程
    • 9 篇 信息与通信工程
    • 8 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 测绘科学与技术
    • 3 篇 软件工程
    • 3 篇 生物工程
    • 2 篇 建筑学
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 城乡规划学
  • 26 篇 理学
    • 17 篇 生物学
    • 6 篇 数学
    • 4 篇 地球物理学
    • 2 篇 物理学
    • 2 篇 地理学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地质学
  • 12 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 历史学
    • 1 篇 考古学

主题

  • 111 篇 graph autoencode...
  • 12 篇 graph neural net...
  • 11 篇 graph neural net...
  • 9 篇 deep learning
  • 9 篇 graph clustering
  • 9 篇 graph representa...
  • 9 篇 graph convolutio...
  • 7 篇 link prediction
  • 6 篇 self-supervised ...
  • 5 篇 community detect...
  • 5 篇 data models
  • 4 篇 representation l...
  • 4 篇 graph attention ...
  • 4 篇 task analysis
  • 4 篇 contrastive lear...
  • 4 篇 graph embedding
  • 4 篇 network embeddin...
  • 3 篇 fault diagnosis
  • 3 篇 graph convolutio...
  • 3 篇 anomaly detectio...

机构

  • 4 篇 hunan univ coll ...
  • 3 篇 anhui univ sch a...
  • 3 篇 anhui univ sch c...
  • 3 篇 anhui univ sch i...
  • 2 篇 hefei comprehens...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 2 篇 shandong normal ...
  • 2 篇 east china jiaot...
  • 2 篇 tennessee techno...
  • 2 篇 xinjiang univ co...
  • 2 篇 hunan normal uni...
  • 2 篇 nankai univ coll...
  • 2 篇 qufu normal univ...
  • 2 篇 south china norm...
  • 1 篇 lebanese amer un...
  • 1 篇 east china univ ...
  • 1 篇 florida atlantic...
  • 1 篇 univ south china...
  • 1 篇 univ cambridge d...

作者

  • 4 篇 pan shirui
  • 4 篇 long guodong
  • 3 篇 ting chee-ming
  • 3 篇 ding zhuanlian
  • 3 篇 jiang jing
  • 3 篇 ombao hernando
  • 3 篇 phan raphael c. ...
  • 3 篇 sun dengdi
  • 3 篇 noman fuad
  • 2 篇 wang shudong
  • 2 篇 li dashuang
  • 2 篇 luo jiawei
  • 2 篇 wang juan
  • 2 篇 zhang yuanyuan
  • 2 篇 atat rachad
  • 2 篇 fu xiangzheng
  • 2 篇 hanachi refka
  • 2 篇 zheng chun-hou
  • 2 篇 davis katherine ...
  • 2 篇 guan renxiang

语言

  • 110 篇 英文
  • 1 篇 其他
检索条件"主题词=Graph Autoencoder"
111 条 记 录,以下是101-110 订阅
排序:
A Novel graph Representation Learning Model for Drug Repositioning Using graph Transition Probability Matrix Over Heterogenous Information Networks  1
收藏 引用
19th International Conference on Advanced Intelligent Computing Technology and Applications (ICIC)
作者: Li, Dong-Xu Deng, Xun Zhao, Bo-Wei Su, Xiao-Rui Li, Guo-Dong You, Zhu-Hong Hu, Peng-Wei Hu, Lun Chinese Acad Sci Xinjiang Tech Inst Phys & Chem Urumqi 830011 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China Xinjiang Lab Minor Speech & Language Informat Pro Urumqi 830011 Peoples R China Northwestern Polytech Univ Sch Comp Sci Xian 710129 Peoples R China
Computational drug repositioning is a promising strategy in discovering new indicators for approved or experimental drugs. However, most of computational-based methods fall short of taking into account the non-Euclide... 详细信息
来源: 评论
MinerFinder: A GAE-LSTM method for predicting location of miners in underground  22
MinerFinder: A GAE-LSTM method for predicting location of mi...
收藏 引用
30th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL GIS)
作者: Goyal, Abhay Madria, Sanjay Frimpong, Samuel Missouri S&T Dept CS Rolla MO 65409 USA
Recent reports by the Mine Safety and Health Administration suggest that several injuries and fatalities could be attributed to the inability to accurately locate miners in case of disasters. Since underground mines h... 详细信息
来源: 评论
Enhancing Heterophilic graph Neural Network Performance through Label Propagation in K-Nearest Neighbor graphs
Enhancing Heterophilic Graph Neural Network Performance thro...
收藏 引用
International Conference on Big Data and Smart Computing (BigComp)
作者: Park, Hyun Seok Park, Ha-Myung Kookmin Univ Seoul South Korea
How can we exploit Label Propagation (LP) to improve the performance of GNN models on heterophilic graphs? graph Neural Network (GNN) models have received a lot of attention as a powerful deep learning technology that... 详细信息
来源: 评论
Cross-graph: Robust and Unsupervised Embedding for Attributed graphs with Corrupted Structure  20
Cross-Graph: Robust and Unsupervised Embedding for Attribute...
收藏 引用
20th IEEE International Conference on Data Mining (ICDM)
作者: Wang, Chun Han, Bo Pan, Shirui Jiang, Jing Niu, Gang Long, Guodong Univ Technol Sydney Australian Artificial Intelligence Inst Sydney NSW Australia Hong Kong Baptist Univ Dept Comp Sci Hong Kong Peoples R China Monash Univ Fac Informat Technol Clayton Vic Australia RIKEN Ctr Adv Intelligence Project Tokyo Japan
graph embedding has shown its effectiveness to represent graph information and capture deep relationships in graph data. Most recent graph embedding methods focus on attributed graphs, since they preserve both structu... 详细信息
来源: 评论
graph Representation Learning of Banking Transaction Network with EdgeWeight-Enhanced Attention and Textual Information  22
Graph Representation Learning of Banking Transaction Network...
收藏 引用
31st ACM Web Conference (WWW)
作者: Minakawa, Naoto Izumi, Kiyoshi Sakaji, Hiroki Sano, Hitomi Univ Tokyo Tokyo Japan
In this paper, we propose a novel approach to capture inter-company relationships from banking transaction data using graph neural networks with a special attention mechanism and textual industry or sector information... 详细信息
来源: 评论
Deep multi-view graph clustering network with weighting mechanism and collaborative training
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 236卷
作者: Liu, Jing Cao, Fuyuan Jing, Xuechun Liang, Jiye Shanxi Univ Sch Comp & Informat Technol Key Lab Computat Intelligence & Chinese Informat P Minist Educ Taiyuan 030006 Peoples R China Shanxi Agr Univ Sch Software Taigu 030801 Peoples R China
With the development of graph convolutional network (GCN), which is powerful in graph embedding learning meanwhile can capture node feature information, deep multi-view graph clustering methods based on graph autoenco... 详细信息
来源: 评论
GRL-LS: A learning style detection in online education using graph representation learning
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2022年 201卷
作者: Muhammad, Bello Ahmad Qi, Chao Wu, Zhenqiang Ahmad, Hafsa Kabir Minist Educ Key Lab Modern Teaching Technol Xian 710062 Shaanxi Peoples R China Shaanxi Normal Univ Sch Comp Sci Xian 710062 Peoples R China Bayero Univ Kano Kano 700241 Nigeria
The accessibility and popularity of online learning have aided the spread of modern learning systems, which provide numerous opportunities for studying the behavior of learners and improving their learning quality. In... 详细信息
来源: 评论
High-order autoencoder with data augmentation for collaborative filtering
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2022年 240卷
作者: Nguyen, Mo Yu, Jian Nguyen, Tung Yongchareon, Sira Auckland Univ Technol 2 Wakefield St Auckland Cbd New Zealand
Early DNN-based collaborative filtering (CF) approaches have demonstrated their superior performance than traditional CF such as Matrix Factorization. However, such approaches treat each user-item interaction as separ... 详细信息
来源: 评论
Adversarial random graph neural network for anomaly detection
收藏 引用
DIGITAL SIGNAL PROCESSING 2024年 146卷
作者: Tuzen, Ahmet Yaslan, Yusuf Aselsan Inc Ankara Turkiye Istanbul Tech Univ Istanbul Turkiye
Anomaly detection is distinguishing unusual objects from normal patterns. It is a complex task due to unpredictable nature of anomalies, which can appear in many forms or they can be hidden by mimicking normal behavio... 详细信息
来源: 评论
Spatial-Spectral graph Contrastive Clustering With Hard Sample Mining for Hyperspectral Images
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2024年 62卷
作者: Guan, Renxiang Tu, Wenxuan Li, Zihao Yu, Hao Hu, Dayu Chen, Yuzeng Tang, Chang Yuan, Qiangqiang Liu, Xinwang Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China Hainan Univ Sch Comp Sci & Technol Haikou 570228 Hainan Peoples R China China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China Wuhan Univ Sch Geodesy & Geomat Wuhan 430079 Peoples R China
Hyperspectral image (HSI) clustering is a fundamental yet challenging task that groups image pixels with similar features into distinct clusters. Among various approaches, contrastive learning methods, which employ th... 详细信息
来源: 评论