咨询与建议

限定检索结果

文献类型

  • 77 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 111 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 82 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 8 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 生物工程
    • 2 篇 建筑学
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 城乡规划学
  • 26 篇 理学
    • 17 篇 生物学
    • 6 篇 数学
    • 4 篇 地球物理学
    • 2 篇 物理学
    • 2 篇 地理学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地质学
  • 15 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 历史学
    • 1 篇 考古学

主题

  • 111 篇 graph autoencode...
  • 12 篇 graph neural net...
  • 11 篇 graph neural net...
  • 9 篇 deep learning
  • 9 篇 graph clustering
  • 9 篇 graph representa...
  • 9 篇 graph convolutio...
  • 7 篇 link prediction
  • 6 篇 self-supervised ...
  • 5 篇 community detect...
  • 5 篇 data models
  • 4 篇 representation l...
  • 4 篇 graph attention ...
  • 4 篇 task analysis
  • 4 篇 contrastive lear...
  • 4 篇 graph embedding
  • 4 篇 network embeddin...
  • 3 篇 fault diagnosis
  • 3 篇 graph convolutio...
  • 3 篇 anomaly detectio...

机构

  • 4 篇 hunan univ coll ...
  • 3 篇 anhui univ sch a...
  • 3 篇 anhui univ sch c...
  • 3 篇 anhui univ sch i...
  • 2 篇 hefei comprehens...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 2 篇 shandong normal ...
  • 2 篇 east china jiaot...
  • 2 篇 tennessee techno...
  • 2 篇 xinjiang univ co...
  • 2 篇 hunan normal uni...
  • 2 篇 nankai univ coll...
  • 2 篇 qufu normal univ...
  • 2 篇 south china norm...
  • 1 篇 lebanese amer un...
  • 1 篇 east china univ ...
  • 1 篇 florida atlantic...
  • 1 篇 univ south china...
  • 1 篇 univ cambridge d...

作者

  • 4 篇 pan shirui
  • 4 篇 long guodong
  • 3 篇 ting chee-ming
  • 3 篇 ding zhuanlian
  • 3 篇 jiang jing
  • 3 篇 ombao hernando
  • 3 篇 phan raphael c. ...
  • 3 篇 sun dengdi
  • 3 篇 noman fuad
  • 2 篇 wang shudong
  • 2 篇 li dashuang
  • 2 篇 luo jiawei
  • 2 篇 wang juan
  • 2 篇 zhang yuanyuan
  • 2 篇 atat rachad
  • 2 篇 fu xiangzheng
  • 2 篇 hanachi refka
  • 2 篇 zheng chun-hou
  • 2 篇 davis katherine ...
  • 2 篇 guan renxiang

语言

  • 110 篇 英文
  • 1 篇 其他
检索条件"主题词=Graph Autoencoder"
111 条 记 录,以下是41-50 订阅
排序:
Imputing single-cell RNA-seq data by graph autoencoder with multi-kernel
Imputing single-cell RNA-seq data by graph autoencoder with ...
收藏 引用
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
作者: Jiang, Kang Liao, Bo. Papagerakis, Petros Wu, Fang-Xiang University of Saskatchewan Division of Biomedical Engineering Saskatoon Canada Hainan Normal University School of Mathematics and Statistics Haikou China University of Saskatchewan College of Dentistry Saskatoon Canada University of Saskatchewan Division of Biomedical Engineering Department of Mechanical Engineering Saskatoon Canada
Single-cell RNA-sequencing (scRNA-seq) technology has revolutionized the field by enabling the profiling of transcriptomes in cell resolution. However, it is flawed by the sparsity caused by low mRNA capture efficienc... 详细信息
来源: 评论
Enhancing equipment safeguarding in IIoT: A self-supervised fault diagnosis paradigm based on asymmetric graph autoencoder
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2024年 296卷
作者: Chen, Zhuohang Liu, Shen Li, Chao Chang, Yuanhong Chen, Jinglong Feng, Gaoshan He, Shuilong Xi An Jiao Tong Univ State Key Lab Mfg & Syst Engn Xian 710049 Peoples R China Dongfeng Liuzhou Motor Co Ltd Liuzhou 545005 Peoples R China Guilin Univ Elect Technol Sch Mech & Elect Engn Guilin 541004 Peoples R China
Thanks to the sufficient monitoring data provided by Industrial Internet of Things (IIoT), intelligent fault diagnosis technology has demonstrated remarkable performance in safeguarding equipment. However, the effecti... 详细信息
来源: 评论
Dual-decoder graph autoencoder for unsupervised graph representation learning
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2021年 234卷 1页
作者: Sun, Dengdi Li, Dashuang Ding, Zhuanlian Zhang, Xingyi Tang, Jin Anhui Univ Sch Artificial Intelligence Key Lab Intelligent Comp & Signal Proc ICSP Minist Educ Hefei 230601 Peoples R China Anhui Univ Sch Comp Sci & Technol Anhui Prov Key Lab Multimodal Cognit Comp Hefei 230601 Peoples R China Anhui Univ Sch Internet Hefei 230039 Peoples R China
Unsupervised graph representation learning is a challenging task that embeds graph data into a low dimensional space without label guidance. Recently, graph autoencoders have been proven to be an effective way to solv... 详细信息
来源: 评论
Community hiding using a graph autoencoder
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2022年 253卷
作者: Liu, Dong Chang, Zhengchao Yang, Guoliang Chen, Enhong Henan Normal Univ Coll Comp & Informat Engn Xinxiang 453000 Henan Peoples R China Key Lab Artificial Intelligence & Personalized Le Xinxiang 453000 Henan Peoples R China Big Data Engn Lab Teaching Resources & Assessment Xinxiang Henan Peoples R China Univ Sci & Technol China Sch Comp Sci Hefei 230000 Anhui Peoples R China
Community detection can reveal real social relations and enable great economic benefits for enterprises and organizations;however, it can also cause privacy problems such as the disclosure of individual or group infor... 详细信息
来源: 评论
A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations
收藏 引用
BMC BIOINFORMATICS 2021年 第1期22卷 136-136页
作者: Shi, Zhuangwei Zhang, Han Jin, Chen Quan, Xiongwen Yin, Yanbin Nankai Univ Coll Artificial Intelligence Tongyan Rd Tianjin 300350 Peoples R China Nankai Univ Coll Comp Sci Tongyan Rd Tianjin 300350 Peoples R China Univ Nebraska Nebraska Food Hlth Ctr Dept Food Sci & Technol 1400 R St Lincoln NE 68588 USA
Background: Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagno... 详细信息
来源: 评论
GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning
收藏 引用
COMPUTATIONAL BIOLOGY AND CHEMISTRY 2022年 第0期99卷 107722页
作者: Li, Guanghui Lin, Yawei Luo, Jiawei Xiao, Qiu Liang, Cheng East China Jiaotong Univ Sch Informat Engn Nanchang Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha Peoples R China Hunan Normal Univ Coll Informat Sci & Engn Changsha Peoples R China Shandong Normal Univ Sch Informat Sci & Engn Jinan Peoples R China
Numerous studies have shown that circular RNAs (circRNAs) can serve as ideal disease markers as they are involved in most cellular activities of organisms and are key regulators in various pathological processes. Ther... 详细信息
来源: 评论
A2AE: Towards adaptive multi-view graph representation learning via all-to-all graph autoencoder architecture
收藏 引用
APPLIED SOFT COMPUTING 2022年 第0期125卷
作者: Sun, Dengdi Li, Dashuang Ding, Zhuanlian Zhang, Xingyi Tang, Jin Anhui Univ Sch Artificial Intelligence Key Lab Intelligent Comp & Signal Proc ICSP Minist Educ Hefei 230601 Peoples R China Anhui Univ Sch Comp Sci & Technol Anhui Prov Key Lab Multimodal Cognit Comp Hefei 230601 Peoples R China Anhui Univ Sch Internet Hefei 230039 Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei 230026 Peoples R China
The multi-view graph is a fundamental data model, which is used to describe complex networks in the real world. Learning the representation of multi-view graphs is a vital step for understanding complex systems and ex... 详细信息
来源: 评论
Remaining useful life prediction of lithium battery based on multi decoder graph autoencoder and transformer network
收藏 引用
IFAC-PapersOnLine 2024年 第29期58卷 350-355页
作者: Yan Ma Jiaqi Li Jinwu Gao Department of Control Science and Engineering Jilin University Changchun 130012 China
Remaining useful life (RUL) of lithium-ion battery is important to maintain safe and reliable battery operation. Health indicators (HIs) are key features for predicting RUL during battery aging, whereas current method... 详细信息
来源: 评论
Social network node pricing based on graph autoencoder in data marketplaces
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 243卷
作者: Sun, Yongjiao Li, Boyang Bi, Xin Feng, Qiang Northeastern Univ Sch Comp Sci & Engn Shenyang 110819 Peoples R China Beijing Inst Technol Sch Comp Sci & Technol Beijing 100081 Peoples R China Northeastern Univ Key Lab Minist Educ Safe Min Deep Met Mines Shenyang 110819 Peoples R China BIT Tangshan Res Inst Tangshan 063000 Peoples R China Hebei Prov Key Lab Big Data Sci & Intelligent Tech Tangshan 063000 Peoples R China
Data have become a valuable digital resource. It has in turn precipitated the emergence of big data marketplaces. For social network date in the marketplaces, each node should be priced according to its influence. The... 详细信息
来源: 评论
GLASS: A graph Laplacian autoencoder with Subspace Clustering Regularization for graph Clustering
收藏 引用
COGNITIVE COMPUTATION 2023年 第3期15卷 803-821页
作者: Sun, Dengdi Liu, Liang Luo, Bin Ding, Zhuanlian Anhui Univ Sch Artificial Intelligence Key Lab Intelligent Comp & Signal Proc ICSP Minist Educ Hefei 230601 Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei 230026 Peoples R China Anhui Univ Sch Comp Sci & Technol Anhui Prov Key Lab Multimodal Cognit Comp Hefei 230601 Peoples R China Anhui Univ Sch Internet Hefei 230039 Peoples R China
graph clustering is an important unsupervised learning task in complex network analysis and its latest progress mainly relies on a graph autoencoder (GAE) model. However, these methods have three major drawbacks. (1) ... 详细信息
来源: 评论