咨询与建议

限定检索结果

文献类型

  • 80 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 115 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 102 篇 工学
    • 86 篇 计算机科学与技术...
    • 36 篇 电气工程
    • 9 篇 信息与通信工程
    • 8 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 测绘科学与技术
    • 3 篇 软件工程
    • 3 篇 生物工程
    • 2 篇 建筑学
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 城乡规划学
  • 28 篇 理学
    • 19 篇 生物学
    • 8 篇 数学
    • 4 篇 地球物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 地理学
    • 2 篇 系统科学
    • 1 篇 地质学
  • 15 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 历史学
    • 1 篇 考古学

主题

  • 115 篇 graph autoencode...
  • 12 篇 graph neural net...
  • 11 篇 graph neural net...
  • 10 篇 deep learning
  • 10 篇 graph convolutio...
  • 9 篇 graph clustering
  • 9 篇 graph representa...
  • 7 篇 link prediction
  • 6 篇 self-supervised ...
  • 5 篇 community detect...
  • 5 篇 data models
  • 4 篇 representation l...
  • 4 篇 graph attention ...
  • 4 篇 graph convolutio...
  • 4 篇 task analysis
  • 4 篇 anomaly detectio...
  • 4 篇 contrastive lear...
  • 4 篇 graph embedding
  • 4 篇 kernel
  • 4 篇 network embeddin...

机构

  • 4 篇 hunan univ coll ...
  • 3 篇 anhui univ sch a...
  • 3 篇 anhui univ sch c...
  • 3 篇 anhui univ sch i...
  • 2 篇 hefei comprehens...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 2 篇 shandong normal ...
  • 2 篇 east china jiaot...
  • 2 篇 tennessee techno...
  • 2 篇 xinjiang univ co...
  • 2 篇 hunan normal uni...
  • 2 篇 nankai univ coll...
  • 2 篇 qufu normal univ...
  • 2 篇 south china norm...
  • 1 篇 lebanese amer un...
  • 1 篇 east china univ ...
  • 1 篇 florida atlantic...
  • 1 篇 univ south china...
  • 1 篇 univ cambridge d...

作者

  • 4 篇 pan shirui
  • 4 篇 long guodong
  • 3 篇 ting chee-ming
  • 3 篇 ding zhuanlian
  • 3 篇 jiang jing
  • 3 篇 ombao hernando
  • 3 篇 phan raphael c. ...
  • 3 篇 sun dengdi
  • 3 篇 noman fuad
  • 2 篇 wang shudong
  • 2 篇 li dashuang
  • 2 篇 luo jiawei
  • 2 篇 wang juan
  • 2 篇 zhang yuanyuan
  • 2 篇 atat rachad
  • 2 篇 fu xiangzheng
  • 2 篇 hanachi refka
  • 2 篇 zheng chun-hou
  • 2 篇 davis katherine ...
  • 2 篇 guan renxiang

语言

  • 111 篇 英文
检索条件"主题词=Graph Autoencoder"
115 条 记 录,以下是51-60 订阅
graphCAR: Content-aware Multimedia Recommendation with graph autoencoder  18
GraphCAR: Content-aware Multimedia Recommendation with Graph...
收藏 引用
41st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
作者: Xu, Qidi Shen, Fumin Liu, Li Shen, Heng Tao Univ Elect Sci & Technol China Ctr Future Media Chengdu Sichuan Peoples R China Univ East Anglia Sch Comp Sci Norwich Norfolk England
Precisely recommending relevant multimedia items from massive candidates to a large number of users is an indispensable yet difficult task on many platforms. A promising way is to project users and items into a latent... 详细信息
来源: 评论
MGAE: Marginalized graph autoencoder for graph Clustering  17
MGAE: Marginalized Graph Autoencoder for Graph Clustering
收藏 引用
ACM Conference on Information and Knowledge Management (CIKM)
作者: Wang, Chun Pan, Shirui Long, Guodong Zhu, Xingquan Jiang, Jing Univ Technol Sydney Ctr Artificial Intelligence Sydney NSW 2007 Australia Florida Atlantic Univ Dept CEECS Boca Raton FL 33431 USA
graph clustering aims to discover community structures in networks, the task being fundamentally challenging mainly because the topology structure and the content of the graphs are difficult to represent for clusterin... 详细信息
来源: 评论
graph Anomaly Detection With Disentangled Prototypical autoencoder for Phishing Scam Detection in Cryptocurrency Transactions
收藏 引用
IEEE ACCESS 2024年 12卷 91075-91088页
作者: Kang, Junha Buu, Seok-Jun Gyeongsang Natl Univ Dept Comp Sci Jinju 52828 South Korea
As the popularity of cryptocurrencies grows, the threat of phishing scams on trading networks is growing. Detecting unusual transactions within the complex structure of these transaction graphs and imbalanced data bet... 详细信息
来源: 评论
graph autoencoders for Embedding Learning in Brain Networks and Major Depressive Disorder Identification
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2024年 第3期28卷 1644-1655页
作者: Noman, Fuad Ting, Chee-Ming Kang, Hakmook Phan, Raphael C. -W. Ombao, Hernando Monash Univ Malaysia Sch Informat Technol Sunway 47500 Malaysia Vanderbilt Univ Med Ctr Dept Biostat Nashville TN 37232 USA King Abdullah Univ Sci & Technol Stat Program Thuwal 239556900 Saudi Arabia
Brain functional connectivity (FC) networks inferred from functional magnetic resonance imaging (fMRI) have shown altered or aberrant brain functional connectome in various neuropsychiatric disorders. Recent applicati... 详细信息
来源: 评论
GLMAE: graph REPRESENTATION LEARNING METHOD COMBINING GENERATIVE LEARNING AND MASKING autoencoder  49
GLMAE: GRAPH REPRESENTATION LEARNING METHOD COMBINING GENERA...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Xu, Yunfeng Zhao, Shaohui Fan, Hexun Wang, Jialin Hebei Univ Sci & Technol Shijiazhuang Hebei Peoples R China
graph representation learning is the foundation for various graph data mining tasks. In the real world, graph data not only contains complex adjacency relationships but also diverse structural information. To address ... 详细信息
来源: 评论
Conformal load prediction with transductive graph autoencoders
收藏 引用
MACHINE LEARNING 2025年 第3期114卷 1-22页
作者: Luo, Rui Colombo, Nicolo City Univ Hong Kong Hong Kong Peoples R China Royal Holloway Univ London Egham Surrey England
Predicting edge weights on graphs has various applications, from transportation systems to social networks. This paper describes a graph Neural Network (GNN) approach for edge weight prediction with guaranteed coverag... 详细信息
来源: 评论
AEGCN: An autoencoder-Constrained graph Convolutional Network
收藏 引用
NEUROCOMPUTING 2021年 432卷 21-31页
作者: Ma, Mingyuan Na, Sen Wang, Hongyu Peking Univ Sch Elect Engn & Comp Sci Beijing Peoples R China Univ Chicago Dept Stat Chicago IL 60637 USA Coordinat Ctr China Natl Comp Network Emergency Response Tech Team Beijing Peoples R China
We propose a novel neural network architecture, called autoencoder-constrained graph convolutional network, to solve node classification task on graph domains. As suggested by its name, the core of this model is a con... 详细信息
来源: 评论
SHGAE: Social Hypergraph autoencoder for Friendship Inference  32nd
SHGAE: Social Hypergraph AutoEncoder for Friendship Inferenc...
收藏 引用
32nd International Conference on Artificial Neural Networks (ICANN)
作者: Li, Yujie Chen, Yan Qi, Tianliang Tian, Feng Wu, Yaqiang Wang, Qianying Xi An Jiao Tong Univ Coll Comp Sci & Technol Xian Shaanxi Peoples R China Lenovo Res Beijing Peoples R China
Location-Based Social Networks (LBSNs) present a significant challenge for inferring social relationships from both social networks and user mobility. While traditional rule-based walk graph representation learning me... 详细信息
来源: 评论
graph-Based Bitcoin Fraud Detection Using Variational graph autoencoders and Supervised Learning
收藏 引用
Procedia Computer Science 2025年 257卷 817-825页
作者: Argyrios Koronaios Georgia Koloniari University of Macedonia Thessaloniki Greece
Bitcoin is a decentralized cryptocurrency, which is rapidly growing and offering many advantages. Although its structure protects users from some types of fraud, it is not completely immune, while fraud detection in B... 详细信息
来源: 评论
Multitask joint learning with graph autoencoders for predicting potential MiRNA-drug associations
收藏 引用
ARTIFICIAL INTELLIGENCE IN MEDICINE 2023年 145卷 102665-102665页
作者: Zhong, Yichen Shen, Cong Xi, Xiaoting Luo, Yuxun Ding, Pingjian Luo, Lingyun Univ South China Sch Comp Sci Hengyang 421001 Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha 410083 Peoples R China Hunan Univ Sci & Technol Sch Comp Sci & Engn Xiangtan 411105 Peoples R China
The occurrence of many diseases is associated with miRNA abnormalities. Predicting potential drug-miRNA associations is of great importance for both disease treatment and new drug discovery. Most computation -based ap... 详细信息
来源: 评论