咨询与建议

限定检索结果

文献类型

  • 201 篇 期刊文献
  • 102 篇 会议

馆藏范围

  • 303 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 284 篇 工学
    • 262 篇 计算机科学与技术...
    • 92 篇 电气工程
    • 20 篇 软件工程
    • 19 篇 信息与通信工程
    • 16 篇 控制科学与工程
    • 7 篇 生物医学工程(可授...
    • 4 篇 材料科学与工程(可...
    • 4 篇 交通运输工程
    • 4 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 网络空间安全
    • 2 篇 机械工程
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 地质资源与地质工...
    • 2 篇 环境科学与工程(可...
  • 42 篇 理学
    • 20 篇 生物学
    • 11 篇 数学
    • 6 篇 物理学
    • 5 篇 化学
    • 3 篇 地球物理学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 37 篇 医学
    • 21 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 5 篇 特种医学
    • 3 篇 药学(可授医学、理...
  • 35 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 9 篇 图书情报与档案管...
  • 10 篇 农学

主题

  • 303 篇 graph contrastiv...
  • 45 篇 graph neural net...
  • 36 篇 graph neural net...
  • 35 篇 graph representa...
  • 34 篇 self-supervised ...
  • 17 篇 data augmentatio...
  • 14 篇 representation l...
  • 12 篇 recommender syst...
  • 12 篇 contrastive lear...
  • 12 篇 training
  • 11 篇 node classificat...
  • 11 篇 feature extracti...
  • 9 篇 data mining
  • 9 篇 unsupervised lea...
  • 8 篇 task analysis
  • 8 篇 semantics
  • 8 篇 graph convolutio...
  • 7 篇 collaborative fi...
  • 7 篇 deep learning
  • 6 篇 anomaly detectio...

机构

  • 6 篇 univ chinese aca...
  • 6 篇 tianjin univ col...
  • 6 篇 shandong univ sc...
  • 5 篇 alibaba grp peop...
  • 4 篇 hefei comprehens...
  • 4 篇 univ sci & techn...
  • 4 篇 kuaishou technol...
  • 4 篇 southeast univ p...
  • 4 篇 jilin univ sch a...
  • 4 篇 beihang univ sch...
  • 3 篇 kunming univ sci...
  • 3 篇 hong kong polyte...
  • 3 篇 kunming univ sci...
  • 3 篇 wuhan univ sch c...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 nanjing univ sta...
  • 3 篇 xidian univ sch ...
  • 3 篇 beijing inst tec...
  • 3 篇 northeastern uni...
  • 3 篇 nanjing univ sci...

作者

  • 7 篇 pan shirui
  • 4 篇 ma xiaoke
  • 4 篇 zhao zhongying
  • 4 篇 zhang jing
  • 4 篇 xu guandong
  • 4 篇 wang rui
  • 4 篇 chen hongxu
  • 3 篇 shen huawei
  • 3 篇 cheng xueqi
  • 3 篇 yang haoran
  • 3 篇 he dongxiao
  • 3 篇 zhang kun
  • 3 篇 dai wei
  • 3 篇 liu xiao
  • 3 篇 wang wei
  • 3 篇 zhang wenjie
  • 3 篇 wang yang
  • 3 篇 wang senzhang
  • 3 篇 bao peng
  • 3 篇 king irwin

语言

  • 299 篇 英文
  • 4 篇 其他
检索条件"主题词=Graph Contrastive Learning"
303 条 记 录,以下是1-10 订阅
排序:
graph contrastive learning of modeling global-local interactions under hierarchical strategy: Application in anomaly detection
收藏 引用
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2025年 196卷
作者: Guo, Weiwei Wang, Yang Zhou, Le Jia, Mingwei Liu, Yi Zhejiang Univ Technol Inst Proc Equipment & Control Engn Hangzhou 310023 Peoples R China Shanghai Dianji Univ Sch Elect Engn Shanghai 200240 Peoples R China Zhejiang Univ Sci & Technol Sch Automat & Elect Engn Hangzhou 310023 Zhejiang Peoples R China
Lack of labeled samples and complexity of unit interactions pose significant challenges for effective anomaly detection in complex industrial processes. This work proposes an unsupervised anomaly detection framework, ... 详细信息
来源: 评论
graph contrastive learning for Multibehavior Recommendation
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2025年
作者: Ma, Gang-Feng Chen, Meng-Ang Yang, Xu-Hua Wen, Xilin Long, Haixia Huang, Yujiao Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310023 Peoples R China Zhejiang Univ Technol Coll Zhijiang Shaoxing 312030 Peoples R China
Multibehavior collaborative filtering recommendations can significantly alleviate data sparsity issues caused by insufficient single-behavior information, enhancing recommendation performance. However, current multibe... 详细信息
来源: 评论
graph contrastive learning with multiple information fusion
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 268卷
作者: Wang, Xiaobao Yang, Jun Wang, Zhiqiang He, Dongxiao Zhao, Jitao Huang, Yuxiao Jin, Di Tianjin Univ Coll Intelligence & Comp Tianjin 300354 Peoples R China Guangdong Lab Artificial Intelligence & Digital Ec Shenzhen 518107 Peoples R China George Washington Univ Washington DC 20052 USA
graph contrastive learning has been extensively studied and achieved great success in many graph downstream tasks. Currently, some works try to construct positive and negative samples in an augmented-free manner. Howe... 详细信息
来源: 评论
graph contrastive learning of subcellular-resolution spatial transcriptomics improves cell type annotation and reveals critical molecular pathways
收藏 引用
BRIEFINGS IN BIOINFORMATICS 2025年 第1期26卷 bbaf020页
作者: Lu, Qiaolin Ding, Jiayuan Li, Lingxiao Chang, Yi Jilin Univ Sch Artificial Intelligence Qianjin St 2699 Changchun 130010 Peoples R China Michigan State Univ Dept Comp Sci & Engn 220 Trowbridge Rd E Lansing MI 48824 USA Boston Univ Commonwealth Ave Boston MA 02215 USA Jilin Univ Int Ctr Future Sci Qianjin St 2699 Changchun 130010 Peoples R China Jilin Univ Engn Res Ctr Knowledge Driven Human Machine Intell Qianjin St 2699 Changchun 130010 Peoples R China
Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA... 详细信息
来源: 评论
graph contrastive learning with node-level accurate difference
收藏 引用
FUNDAMENTAL RESEARCH 2025年 第2期5卷 818-829页
作者: Jiao, Pengfei Yu, Kaiyan Bao, Qing Jiang, Ying Guo, Xuan Zhao, Zhidong Hangzhou Dianzi Univ Sch Cyberspace Hangzhou 310018 Peoples R China Tianjin Univ Coll Intelligence & Comp Tianjin 300350 Peoples R China Hangzhou Dianzi Univ Data Secur Governance Zhejiang Engn Res Ctr Hangzhou 310018 Peoples R China
graph contrastive learning (GCL) has attracted extensive research interest due to its powerful ability to capture latent structural and semantic information of graphs in a self-supervised manner. Existing GCL methods ... 详细信息
来源: 评论
GPS: graph contrastive learning via multi-scale augmented views from adversarial pooling
收藏 引用
Science China(Information Sciences) 2025年 第1期68卷 145-158页
作者: Wei JU Yiyang GU Zhengyang MAO Ziyue QIAO Yifang QIN Xiao LUO Hui XIONG Ming ZHANG School of Computer Science National Key Laboratory for Multimedia Information ProcessingPeking University Artificial Intelligence Thrust The Hong Kong University of Science and Technology Department of Computer Science University of California
Self-supervised graph representation learning has recently shown considerable promise in a range of fields, including bioinformatics and social networks. A large number of graph contrastive learning approaches have sh... 详细信息
来源: 评论
Semi-Supervised Dual-Stream Self-Attentive Adversarial graph contrastive learning for Cross-Subject EEG-Based Emotion Recognition
收藏 引用
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 2025年 第1期16卷 290-305页
作者: Ye, Weishan Zhang, Zhiguo Teng, Fei Zhang, Min Wang, Jianhong Ni, Dong Li, Fali Xu, Peng Liang, Zhen Shenzhen Univ Sch Biomed Engn Med Sch Shenzhen 518060 Peoples R China Guangdong Prov Key Lab Biomed Measurements & Ultra Shenzhen 518060 Peoples R China Harbin Inst Technol Inst Comp & Intelligence Shenzhen 518000 Peoples R China Marshall Lab Biomed Engn Shenzhen 518060 Peoples R China Peng Cheng Lab Shenzhen 518055 Peoples R China Shenzhen Kangning Hosp Shenzhen Mental Hlth Ctr Shenzhen 518020 Peoples R China Univ Elect Sci & Technol China Clin Hosp Chengdu Brain Sci Inst MOE Key Lab Neuroinformat Chengdu 611731 Peoples R China Univ Elect Sci & Technol China Sch Life Sci & Technol Ctr Informat Med Chengdu 611731 Peoples R China
Electroencephalography (EEG) is an objective tool for emotion recognition with promising applications. However, the scarcity of labeled data remains a major challenge in this field, limiting the widespread use of EEG-... 详细信息
来源: 评论
Self-attentive Rationalization for Interpretable graph contrastive learning
收藏 引用
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA 2025年 第2期19卷 1-21页
作者: Li, Sihang Luo, Yanchen Zhang, An Wang, Xiang Li, Longfei Zhou, Jun Chua, Tat-seng Univ Sci & Technol China Hefei Peoples R China Natl Univ Singapore Singapore Singapore Ant Grp Hangzhou Peoples R China
graph augmentation is the key component to reveal instance-discriminative features of a graph as its rationale- an interpretation for it-in graph contrastive learning (GCL). Existing rationale-aware augmentation mecha... 详细信息
来源: 评论
Molecular graph contrastive learning with line graph
收藏 引用
PATTERN RECOGNITION 2025年 162卷
作者: Chen, Xueyuan Li, Shangzhe Liu, Ruomei Shi, Bowen Liu, Jiaheng Wu, Junran Xu, Ke Beihang Univ State Key Lab Complex & Crit Software Environm 37 Xueyuan Rd Beijing 100191 Peoples R China Cent Univ Finance & Econ Sch Stat & Math 39 South Coll Rd Beijing 100081 Peoples R China Commun Univ China Sch Journalism 1 Dingfuzhuang East St Beijing 100024 Peoples R China
Trapped by the label scarcity in molecular property prediction and drug design, graph contrastive learning (GCL) came forward. Leading contrastive learning works show two kinds of view generators, that is, random or l... 详细信息
来源: 评论
Attributed network community detection based on graph contrastive learning and multi-objective evolutionary algorithm
收藏 引用
NEUROCOMPUTING 2025年 636卷
作者: Liang, Yao Shu, Jian Liu, Linlan Nanchang Hangkong Univ Dept Software Nanchang 330063 Peoples R China Nanchang Hangkong Univ Dept Informat Engn Nanchang 330063 Peoples R China
Attributed network community detection holds significant research value for network structure analysis and practical applications. However, existing methods still face significant challenges in addressing the conflict... 详细信息
来源: 评论