咨询与建议

限定检索结果

文献类型

  • 202 篇 期刊文献
  • 100 篇 会议

馆藏范围

  • 302 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 283 篇 工学
    • 261 篇 计算机科学与技术...
    • 92 篇 电气工程
    • 19 篇 软件工程
    • 16 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 7 篇 生物医学工程(可授...
    • 4 篇 材料科学与工程(可...
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 地质资源与地质工...
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 机械工程
  • 40 篇 理学
    • 21 篇 生物学
    • 9 篇 数学
    • 6 篇 物理学
    • 5 篇 化学
    • 3 篇 地球物理学
    • 2 篇 系统科学
    • 1 篇 地质学
    • 1 篇 统计学(可授理学、...
  • 37 篇 医学
    • 21 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 5 篇 特种医学
    • 3 篇 药学(可授医学、理...
  • 32 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 10 篇 农学

主题

  • 302 篇 graph contrastiv...
  • 44 篇 graph neural net...
  • 36 篇 graph neural net...
  • 35 篇 graph representa...
  • 33 篇 self-supervised ...
  • 18 篇 data augmentatio...
  • 15 篇 representation l...
  • 14 篇 contrastive lear...
  • 14 篇 training
  • 12 篇 recommender syst...
  • 12 篇 feature extracti...
  • 11 篇 node classificat...
  • 9 篇 data mining
  • 9 篇 semantics
  • 9 篇 unsupervised lea...
  • 8 篇 collaborative fi...
  • 8 篇 task analysis
  • 8 篇 graph convolutio...
  • 7 篇 deep learning
  • 6 篇 graph convolutio...

机构

  • 7 篇 tianjin univ col...
  • 6 篇 univ chinese aca...
  • 6 篇 shandong univ sc...
  • 5 篇 alibaba grp peop...
  • 4 篇 hefei comprehens...
  • 4 篇 univ sci & techn...
  • 4 篇 kuaishou technol...
  • 4 篇 southeast univ p...
  • 4 篇 jilin univ sch a...
  • 4 篇 beihang univ sch...
  • 3 篇 kunming univ sci...
  • 3 篇 hong kong polyte...
  • 3 篇 kunming univ sci...
  • 3 篇 wuhan univ sch c...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 nanjing univ sta...
  • 3 篇 xidian univ sch ...
  • 3 篇 beijing inst tec...
  • 3 篇 northeastern uni...
  • 3 篇 nanjing univ sci...

作者

  • 7 篇 pan shirui
  • 4 篇 ma xiaoke
  • 4 篇 zhao zhongying
  • 4 篇 wang chenxu
  • 4 篇 zhang jing
  • 4 篇 xu guandong
  • 4 篇 wang rui
  • 4 篇 chen hongxu
  • 3 篇 shen huawei
  • 3 篇 cheng xueqi
  • 3 篇 yang haoran
  • 3 篇 he dongxiao
  • 3 篇 zhang kun
  • 3 篇 dai wei
  • 3 篇 liu xiao
  • 3 篇 wang wei
  • 3 篇 zhang wenjie
  • 3 篇 wang yang
  • 3 篇 bao peng
  • 3 篇 king irwin

语言

  • 299 篇 英文
  • 2 篇 其他
检索条件"主题词=Graph Contrastive Learning"
302 条 记 录,以下是1-10 订阅
排序:
graph contrastive learning of modeling global-local interactions under hierarchical strategy: Application in anomaly detection
收藏 引用
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2025年 196卷
作者: Guo, Weiwei Wang, Yang Zhou, Le Jia, Mingwei Liu, Yi Zhejiang Univ Technol Inst Proc Equipment & Control Engn Hangzhou 310023 Peoples R China Shanghai Dianji Univ Sch Elect Engn Shanghai 200240 Peoples R China Zhejiang Univ Sci & Technol Sch Automat & Elect Engn Hangzhou 310023 Zhejiang Peoples R China
Lack of labeled samples and complexity of unit interactions pose significant challenges for effective anomaly detection in complex industrial processes. This work proposes an unsupervised anomaly detection framework, ... 详细信息
来源: 评论
graph contrastive learning for Multibehavior Recommendation
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2025年
作者: Ma, Gang-Feng Chen, Meng-Ang Yang, Xu-Hua Wen, Xilin Long, Haixia Huang, Yujiao Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310023 Peoples R China Zhejiang Univ Technol Coll Zhijiang Shaoxing 312030 Peoples R China
Multibehavior collaborative filtering recommendations can significantly alleviate data sparsity issues caused by insufficient single-behavior information, enhancing recommendation performance. However, current multibe... 详细信息
来源: 评论
graph contrastive learning with multiple information fusion
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 268卷
作者: Wang, Xiaobao Yang, Jun Wang, Zhiqiang He, Dongxiao Zhao, Jitao Huang, Yuxiao Jin, Di Tianjin Univ Coll Intelligence & Comp Tianjin 300354 Peoples R China Guangdong Lab Artificial Intelligence & Digital Ec Shenzhen 518107 Peoples R China George Washington Univ Washington DC 20052 USA
graph contrastive learning has been extensively studied and achieved great success in many graph downstream tasks. Currently, some works try to construct positive and negative samples in an augmented-free manner. Howe... 详细信息
来源: 评论
graph contrastive learning for Clustering of Multi-Layer Networks
收藏 引用
IEEE TRANSACTIONS ON BIG DATA 2024年 第4期10卷 429-441页
作者: Yang, Yifei Ma, Xiaoke Xidian Univ Sch Comp Sci & Technol Key Lab Smart Human Comp Interact & Wearable Techn Xian 710071 Peoples R China
Multi-layer networks precisely model complex systems in society and nature with various types of interactions, and identifying conserved modules that are well-connected in all layers is of great significance for revea... 详细信息
来源: 评论
graph contrastive learning of subcellular-resolution spatial transcriptomics improves cell type annotation and reveals critical molecular pathways
收藏 引用
BRIEFINGS IN BIOINFORMATICS 2025年 第1期26卷 bbaf020页
作者: Lu, Qiaolin Ding, Jiayuan Li, Lingxiao Chang, Yi Jilin Univ Sch Artificial Intelligence Qianjin St 2699 Changchun 130010 Peoples R China Michigan State Univ Dept Comp Sci & Engn 220 Trowbridge Rd E Lansing MI 48824 USA Boston Univ Commonwealth Ave Boston MA 02215 USA Jilin Univ Int Ctr Future Sci Qianjin St 2699 Changchun 130010 Peoples R China Jilin Univ Engn Res Ctr Knowledge Driven Human Machine Intell Qianjin St 2699 Changchun 130010 Peoples R China
Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA... 详细信息
来源: 评论
graph contrastive learning With Feature Augmentation for Rumor Detection
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2024年 第4期11卷 5158-5167页
作者: Li, Shaohua Li, Weimin Luvembe, Alex Munyole Tong, Weiqin Shanghai Univ Sch Comp Engn & Sci Shanghai 200444 Peoples R China
While online social media brings convenience to people's communication, it has also caused the widespread spread of rumors and brought great harm. Recent deep-learning approaches attempt to identify rumors by enga... 详细信息
来源: 评论
graph contrastive learning for Tracking Dynamic Communities in Temporal Networks
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2024年 第5期8卷 3422-3435页
作者: Ai, Yun Xie, Xianghua Ma, Xiaoke Xidian Univ Sch Comp Sci & Technol Xian 710071 Peoples R China Xidian Univ Key Lab Smart Human Comp Interact & Wearable Tech Xian 710071 Peoples R China Swansea Univ Dept Comp Sci Swansea SA1 8EN W Glam Wales
Temporal networks are ubiquitous because complex systems in nature and society are evolving, and tracking dynamic communities is critical for revealing the mechanism of systems. Moreover, current algorithms utilize te... 详细信息
来源: 评论
graph contrastive learning with high-order feature interactions and adversarial Wasserstein-distance-based alignment
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE learning AND CYBERNETICS 2024年 1-12页
作者: Wang, Chenxu Wan, Zhizhong Meng, Panpan Wang, Shihao Wang, Zhanggong Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China Xi An Jiao Tong Univ MoE Key Lab Intelligent Networks & Network Secur Xian 710049 Peoples R China
graph contrastive learning (GCL) has proven to be an effective approach for unsupervised representation learning on graph-structured data. However, existing GCL models face two major limitations. First, existing featu... 详细信息
来源: 评论
graph contrastive learning with node-level accurate difference
收藏 引用
FUNDAMENTAL RESEARCH 2025年 第2期5卷 818-829页
作者: Jiao, Pengfei Yu, Kaiyan Bao, Qing Jiang, Ying Guo, Xuan Zhao, Zhidong Hangzhou Dianzi Univ Sch Cyberspace Hangzhou 310018 Peoples R China Tianjin Univ Coll Intelligence & Comp Tianjin 300350 Peoples R China Hangzhou Dianzi Univ Data Secur Governance Zhejiang Engn Res Ctr Hangzhou 310018 Peoples R China
graph contrastive learning (GCL) has attracted extensive research interest due to its powerful ability to capture latent structural and semantic information of graphs in a self-supervised manner. Existing GCL methods ... 详细信息
来源: 评论
graph contrastive learning with graph Info-Min  23
Graph Contrastive Learning with Graph Info-Min
收藏 引用
32nd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Meng, En Liu, Yong Heilongjiang Univ Haerbin Peoples R China
The complexity of the graph structure poses a challenge for graph representation learning. contrastive learning offers a straightforward and efficient unsupervised framework for graph representation learning. It achie... 详细信息
来源: 评论