咨询与建议

限定检索结果

文献类型

  • 202 篇 期刊文献
  • 100 篇 会议

馆藏范围

  • 302 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 283 篇 工学
    • 261 篇 计算机科学与技术...
    • 92 篇 电气工程
    • 19 篇 软件工程
    • 16 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 7 篇 生物医学工程(可授...
    • 4 篇 材料科学与工程(可...
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 地质资源与地质工...
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 机械工程
  • 40 篇 理学
    • 21 篇 生物学
    • 9 篇 数学
    • 6 篇 物理学
    • 5 篇 化学
    • 3 篇 地球物理学
    • 2 篇 系统科学
    • 1 篇 地质学
    • 1 篇 统计学(可授理学、...
  • 37 篇 医学
    • 21 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 5 篇 特种医学
    • 3 篇 药学(可授医学、理...
  • 32 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 10 篇 农学

主题

  • 302 篇 graph contrastiv...
  • 44 篇 graph neural net...
  • 36 篇 graph neural net...
  • 35 篇 graph representa...
  • 33 篇 self-supervised ...
  • 18 篇 data augmentatio...
  • 15 篇 representation l...
  • 14 篇 contrastive lear...
  • 14 篇 training
  • 12 篇 recommender syst...
  • 12 篇 feature extracti...
  • 11 篇 node classificat...
  • 9 篇 data mining
  • 9 篇 semantics
  • 9 篇 unsupervised lea...
  • 8 篇 collaborative fi...
  • 8 篇 task analysis
  • 8 篇 graph convolutio...
  • 7 篇 deep learning
  • 6 篇 graph convolutio...

机构

  • 7 篇 tianjin univ col...
  • 6 篇 univ chinese aca...
  • 6 篇 shandong univ sc...
  • 5 篇 alibaba grp peop...
  • 4 篇 hefei comprehens...
  • 4 篇 univ sci & techn...
  • 4 篇 kuaishou technol...
  • 4 篇 southeast univ p...
  • 4 篇 jilin univ sch a...
  • 4 篇 beihang univ sch...
  • 3 篇 kunming univ sci...
  • 3 篇 hong kong polyte...
  • 3 篇 kunming univ sci...
  • 3 篇 wuhan univ sch c...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 nanjing univ sta...
  • 3 篇 xidian univ sch ...
  • 3 篇 beijing inst tec...
  • 3 篇 northeastern uni...
  • 3 篇 nanjing univ sci...

作者

  • 7 篇 pan shirui
  • 4 篇 ma xiaoke
  • 4 篇 zhao zhongying
  • 4 篇 wang chenxu
  • 4 篇 zhang jing
  • 4 篇 xu guandong
  • 4 篇 wang rui
  • 4 篇 chen hongxu
  • 3 篇 shen huawei
  • 3 篇 cheng xueqi
  • 3 篇 yang haoran
  • 3 篇 he dongxiao
  • 3 篇 zhang kun
  • 3 篇 dai wei
  • 3 篇 liu xiao
  • 3 篇 wang wei
  • 3 篇 zhang wenjie
  • 3 篇 wang yang
  • 3 篇 bao peng
  • 3 篇 king irwin

语言

  • 299 篇 英文
  • 2 篇 其他
检索条件"主题词=Graph Contrastive Learning"
302 条 记 录,以下是21-30 订阅
排序:
FHgraph:A Novel Framework for Fake News Detection Using graph contrastive learning and LLM
收藏 引用
Computers, Materials & Continua 2025年 第4期83卷 309-333页
作者: Yuanqing Li Mengyao Dai Sanfeng Zhang School of Cyber Science and Engineering Southeast UniversityNanjing210096China Key Laboratory of Computer Network and Information Integration(Southeast University) Ministry of EducationNanjing210096China
Social media has significantly accelerated the rapid dissemination of information,but it also boosts propagation of fake news,posing serious challenges to public awareness and social *** real-world contexts,the volume... 详细信息
来源: 评论
TagRec: Temporal-Aware graph contrastive learning With Theoretical Augmentation for Sequential Recommendation
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2025年 第5期37卷 3015-3029页
作者: Peng, Tianhao Yuan, Haitao Zhang, Yongqi Li, Yuchen Dai, Peihong Wang, Qunbo Wang, Senzhang Wu, Wenjun Beihang Univ Beijing 100191 Peoples R China Nanyang Technol Univ Singapore 639798 Singapore Hong Kong Univ Sci & Technol Guangzhou Hong Kong Peoples R China Shanghai Jiao Tong Univ Shanghai 200240 Peoples R China Chinese Acad Sci Inst Automat Beijing 100045 Peoples R China Cent South Univ Changsha 410017 Hunan Peoples R China
Sequential recommendation systems aim to predict the future behaviors of users based on their historical interactions. Despite the success of neural architectures like Transformer and graph Neural Networks, these mode... 详细信息
来源: 评论
Power system state estimation based on graph contrastive learning
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 270卷
作者: Li, Ping Dai, Zhen Wang, Mengzhen Wang, Zhenyu South China Univ Technol Sch Software Engn Guangzhou 510000 Guangdong Peoples R China China Southern Power Grid Artificial Intelligence Guangzhou 510000 Guangdong Peoples R China China Southern Power Grid Digital Grid Res Inst Co Guangzhou 510663 Guangdong Peoples R China
The efficient and stable operation of power systems relies on accurate state estimation. Traditional state estimation methods usually involve solving a minimization problem iteratively using Gauss-Newton methods, howe... 详细信息
来源: 评论
GMNI: Achieve good data augmentation in unsupervised graph contrastive learning
收藏 引用
NEURAL NETWORKS 2025年 181卷 106804页
作者: Xiong, Xin Wang, Xiangyu Yang, Suorong Shen, Furao Zhao, Jian Nanjing Univ State Key Lab Novel Software Technol Nanjing 210023 Peoples R China Nanjing Univ Sch Artificial Intelligence Nanjing 210023 Peoples R China Nanjing Univ Dept Comp Sci & Technol Nanjing 210023 Peoples R China Nanjing Univ Sch Elect Sci & Engn Nanjing 210023 Peoples R China
graph contrastive learning (GCL) shows excellent potential in unsupervised graph representation learning. Data augmentation (DA), responsible for generating diverse views, plays a vital role in GCL, and its optimal ch... 详细信息
来源: 评论
From overfitting to robustness: Quantity, quality, and variety oriented negative sample selection in graph contrastive learning
收藏 引用
APPLIED SOFT COMPUTING 2025年 170卷
作者: Ali, Adnan Li, Jinlong Chen, Huanhuan Bashir, Ali Kashif Univ Sci & Technol China Sch Comp Sci & Technol Jinzhai Rd 23006 Hefei Anhui Peoples R China Manchester Metropolitan Univ Dept Comp & Math Manchester M15 6BH England Chitkara Univ Chitkara Univ Inst Engn & Technol Ctr Res Impact & Outcome Rajpura 140401 Punjab India
graph contrastive learning (GCL) aims to contrast positive-negative counterparts to learn the node embeddings, whereas graph data augmentation methods are employed to generate these positive-negative samples. The quan... 详细信息
来源: 评论
Heterogeneous graph contrastive learning-based transductive health condition assessment of Francis turbine unit
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 145卷
作者: Zhang, Fengyuan Liu, Jie Liu, Yujie Li, Yuxin Duan, Ran Chen, Zhidi Jiang, Xingxing Tongji Univ Sch Ocean & Earth Sci Shanghai 200092 Peoples R China Huazhong Univ Sci & Technol Sch Civil & Hydraul Engn Wuhan 430074 Peoples R China Changjiang Survey Planning Design & Res Co Ltd Wuhan 430010 Peoples R China CTG Wuhan Sci & Technol Innovat Pk Wuhan 430014 Peoples R China Soochow Univ Sch Rail Transportat Suzhou 215131 Peoples R China
To assess the Francis turbine unit's (FTU) degradation status from the onsite data without state labeling, a series of health benchmark model (HBM) driven health condition assessment (HCA) methods have been propos... 详细信息
来源: 评论
AAGCN: An adaptive data augmentation for graph contrastive learning
收藏 引用
PATTERN RECOGNITION 2025年 163卷
作者: Qin, Peng Lu, Yaochun Chen, Weifu Li, Defang Feng, Guocan Sun Yat Sen Univ Sch Math Guangzhou Peoples R China Sun Yat Sen Univ Guangdong Prov Key Lab Guangzhou Peoples R China Guangzhou Maritime Univ Dept Comp Sci Guangzhou Peoples R China Guangzhou Vocat Coll Technol & Business Guangzhou Peoples R China
contrastive learning has achieved great success in many applications. A key step in contrastive learning is to find a positive sample and negative samples. Traditional methods find the positive sample by choosing the ... 详细信息
来源: 评论
Encoder augmentation for multi-task graph contrastive learning
收藏 引用
NEUROCOMPUTING 2025年 630卷
作者: Wang, Xiaoyu Zhang, Qiqi Liu, Gen Zhao, Zhongying Cui, Hongzhi Shandong Univ Sci & Technol Coll Comp Sci & Engn Qingdao 266590 Peoples R China Inspur Commun Informat Syst Co Jinan 250100 Peoples R China
graph contrastive learning (GCL), as one of the most popular self-supervised paradigms, has achieved a great deal of success in the field of graph representation learning. However, many GCL methods face a limitation i... 详细信息
来源: 评论
Node importance evaluation in heterogeneous network based on attention mechanism and graph contrastive learning
收藏 引用
NEUROCOMPUTING 2025年 626卷
作者: Shu, Jian Zou, Yiling Cui, Hui Liu, Linlan Nanchang Hangkong Univ Sch Software Nanchang 330063 Peoples R China Nanchang Hangkong Univ Sch Informat Engn Nanchang 330063 Peoples R China
Recently, heterogeneous networks have attracted widespread attention as a modeling approach for complex networks. However, the complex structure and diversity of semantic relations of heterogeneous networks pose chall... 详细信息
来源: 评论
MCTGCL: Mixed CNNTransformer for Mars Hyperspectral Image Classification With graph contrastive learning
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2025年 63卷
作者: Xi, Bobo Zhang, Yun Li, Jiaojiao Zheng, Tie Zhao, Xunfeng Xu, Haitao Xue, Changbin Li, Yunsong Chanussot, Jocelyn Xidian Univ Sch Telecommun Engn State Key Lab Integrated Serv Networks Xian Peoples R China Chinese Acad Sci Natl Space Sci Ctr Beijing 100190 Peoples R China Chinese Acad Sci Natl Space Sci Ctr Key Lab Elect & Informat Technol Space Syst Beijing 100190 Peoples R China Univ Grenoble Alpes Inria CNRS Grenoble INLJK F-38000 Grenoble France
Hyperspectral image (HSI) classification has been extensively studied in the context of Earth observation. However, its application in Mars exploration remains limited. Although convolutional neural networks (CNNs) ha... 详细信息
来源: 评论