咨询与建议

限定检索结果

文献类型

  • 202 篇 期刊文献
  • 100 篇 会议

馆藏范围

  • 302 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 283 篇 工学
    • 261 篇 计算机科学与技术...
    • 92 篇 电气工程
    • 19 篇 软件工程
    • 16 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 7 篇 生物医学工程(可授...
    • 4 篇 材料科学与工程(可...
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 地质资源与地质工...
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 机械工程
  • 40 篇 理学
    • 21 篇 生物学
    • 9 篇 数学
    • 6 篇 物理学
    • 5 篇 化学
    • 3 篇 地球物理学
    • 2 篇 系统科学
    • 1 篇 地质学
    • 1 篇 统计学(可授理学、...
  • 37 篇 医学
    • 21 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 5 篇 特种医学
    • 3 篇 药学(可授医学、理...
  • 32 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 10 篇 农学

主题

  • 302 篇 graph contrastiv...
  • 44 篇 graph neural net...
  • 36 篇 graph neural net...
  • 35 篇 graph representa...
  • 33 篇 self-supervised ...
  • 18 篇 data augmentatio...
  • 15 篇 representation l...
  • 14 篇 contrastive lear...
  • 14 篇 training
  • 12 篇 recommender syst...
  • 12 篇 feature extracti...
  • 11 篇 node classificat...
  • 9 篇 data mining
  • 9 篇 semantics
  • 9 篇 unsupervised lea...
  • 8 篇 collaborative fi...
  • 8 篇 task analysis
  • 8 篇 graph convolutio...
  • 7 篇 deep learning
  • 6 篇 graph convolutio...

机构

  • 7 篇 tianjin univ col...
  • 6 篇 univ chinese aca...
  • 6 篇 shandong univ sc...
  • 5 篇 alibaba grp peop...
  • 4 篇 hefei comprehens...
  • 4 篇 univ sci & techn...
  • 4 篇 kuaishou technol...
  • 4 篇 southeast univ p...
  • 4 篇 jilin univ sch a...
  • 4 篇 beihang univ sch...
  • 3 篇 kunming univ sci...
  • 3 篇 hong kong polyte...
  • 3 篇 kunming univ sci...
  • 3 篇 wuhan univ sch c...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 nanjing univ sta...
  • 3 篇 xidian univ sch ...
  • 3 篇 beijing inst tec...
  • 3 篇 northeastern uni...
  • 3 篇 nanjing univ sci...

作者

  • 7 篇 pan shirui
  • 4 篇 ma xiaoke
  • 4 篇 zhao zhongying
  • 4 篇 wang chenxu
  • 4 篇 zhang jing
  • 4 篇 xu guandong
  • 4 篇 wang rui
  • 4 篇 chen hongxu
  • 3 篇 shen huawei
  • 3 篇 cheng xueqi
  • 3 篇 yang haoran
  • 3 篇 he dongxiao
  • 3 篇 zhang kun
  • 3 篇 dai wei
  • 3 篇 liu xiao
  • 3 篇 wang wei
  • 3 篇 zhang wenjie
  • 3 篇 wang yang
  • 3 篇 bao peng
  • 3 篇 king irwin

语言

  • 299 篇 英文
  • 2 篇 其他
检索条件"主题词=Graph Contrastive Learning"
302 条 记 录,以下是41-50 订阅
排序:
TP-GCL: graph contrastive learning from the tensor perspective
收藏 引用
FRONTIERS IN NEUROROBOTICS 2024年 18卷 1381084页
作者: Li, Mingyuan Meng, Lei Ye, Zhonglin Yang, Yanglin Cao, Shujuan Xiao, Yuzhi Zhao, Haixing Qinghai Normal Univ Coll Comp Xining Peoples R China State Key Lab Tibetan Intelligent Informat Proc & Xining Peoples R China
graph Neural Networks (GNNs) have demonstrated significant potential as powerful tools for handling graph data in various fields. However, traditional GNNs often encounter limitations in information capture and genera... 详细信息
来源: 评论
PeerG: A P2P botnet detection method based on representation learning and graph contrastive learning
收藏 引用
COMPUTERS & SECURITY 2024年 140卷
作者: Wu, Guangli Wang, Xingyue Zhang, Jing Gansu Univ Polit Sci & Law Sch Cyberspace Secur Lanzhou 730070 Peoples R China
P2P botnets are distributed with complex topology and communication behavior, making them harder to detect and remove. Individuals or organizations can effectively detect P2P botnets by analyzing abnormal behaviors in... 详细信息
来源: 评论
Semi-Supervised graph contrastive learning With Virtual Adversarial Augmentation
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2024年 第8期36卷 4232-4244页
作者: Dong, Yixiang Luo, Minnan Li, Jundong Liu, Ziqi Zheng, Qinghua Xi An Jiao Tong Univ Sch Comp Sci & Technol Xian 710049 Peoples R China Univ Virginia Dept Elect & Comp Engn Dept Comp Sci Charlottesville VA 22904 USA Ant Grp AI Dept Hangzhou 310013 Zhejiang Peoples R China
Semi-supervised graph learning aims to improve learning performance by leveraging unlabeled nodes. Typically, it can be approached in two different ways, including predictive representation learning (PRL) where unlabe... 详细信息
来源: 评论
PT4Rec: a universal prompt-tuning framework for graph contrastive learning-based recommendations
收藏 引用
MACHINE learning 2025年 第3期114卷 1-20页
作者: Xiao, Wei Zhou, Qifeng Xiamen Univ Dept Automat Xiamen Peoples R China
graph contrastive learning-based recommendations have attracted a lot of research attention due to their exceptional performance. However, these approaches, which hinge on the optimization of downstream recommendation... 详细信息
来源: 评论
MDFCL: Multimodal data fusion-based graph contrastive learning framework for molecular property prediction
收藏 引用
PATTERN RECOGNITION 2025年 163卷
作者: Gong, Xu Liu, Maotao Liu, Qun Guo, Yike Wang, Guoyin Chongqing Univ Posts & Telecommun Chongqing Key Lab Computat Intelligence Chongqing 400065 Peoples R China Hong Kong Univ Sci & Technol Clear Water Bay Kowloon Hong Kong 999077 Peoples R China
Molecular property prediction is a critical task with substantial applications for drug design and repositioning. The multiplicity of molecular data modalities and paucity of labeled data present significant challenge... 详细信息
来源: 评论
Incorporating attributes and multi-scale structures for heterogeneous graph contrastive learning
收藏 引用
INFORMATION FUSION 2025年 122卷
作者: Jiang, Ruobing Li, Yacong Liu, Haobing Yu, Yanwei Ocean Univ China Dept Comp Sci & Technol Qingdao Peoples R China
Heterogeneous graphs (HGs) are composed of multiple types of nodes and edges, making it more effective in capturing the complex relational structures inherent in the real world. However, in real-world scenarios, label... 详细信息
来源: 评论
Robust graph contrastive learning with multi-hop views for node classification
收藏 引用
APPLIED SOFT COMPUTING 2025年 171卷
作者: Wang, Yutong Zhang, Junheng Cao, Ren Zou, Minhao Guan, Chun Leng, Siyang Fudan Univ Inst AI & Robot Acad Engn & Technol Shanghai 200433 Peoples R China Fudan Univ Res Inst Intelligent Complex Syst Shanghai 200433 Peoples R China
contrastive learning has been proven successful in graph self-supervised learning by addressing label scarcity in real-world applications. Most existing methods fail to effectively incorporate multi-hop information in... 详细信息
来源: 评论
Improving the quality of Positive and Negative Samples based on Topological Analysis and Counterfactual Reasoning for graph contrastive learning
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 277卷
作者: Wang, Xiaoyu Zhang, Qiqi Liu, Gen Zhao, Zhongying Shandong Univ Sci & Technol Coll Comp Sci & Engn Qingdao 266590 Peoples R China
graph contrastive learning (GCL), as one of the most popular self-supervised paradigms, has achieved significant success in graph representation learning. However, its performance heavily depends on the quality of pos... 详细信息
来源: 评论
Deconvolution of spatial transcriptomics data via graph contrastive learning and partial least square regression
收藏 引用
BRIEFINGS IN BIOINFORMATICS 2025年 第1期26卷 bbaf052页
作者: Mo, Yuanyuan Liu, Juan Zhang, Lihua Wuhan Univ Sch Artificial Intelligence Sch Comp Sci Wuhan 430072 Peoples R China
Deciphering the cellular abundance in spatial transcriptomics (ST) is crucial for revealing the spatial architecture of cellular heterogeneity within tissues. However, some of the current spatial sequencing technologi... 详细信息
来源: 评论
SGCL: Semi-supervised graph contrastive learning with confidence propagation algorithm for node classification
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2024年 301卷
作者: Jiang, Wenhao Bai, Yuebin Beihang Univ Sch Comp Sci & Engn Beijing 100191 Peoples R China
Semi-Supervised graph learning (SSGL) aims to predict massive unknown labels based on a subset of known labels within a graph. Recently, graph neural network, one of the most popular SSGL approaches, has garnered cons... 详细信息
来源: 评论