咨询与建议

限定检索结果

文献类型

  • 981 篇 会议
  • 890 篇 期刊文献
  • 4 篇 学位论文

馆藏范围

  • 1,875 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,214 篇 工学
    • 982 篇 计算机科学与技术...
    • 465 篇 电气工程
    • 156 篇 信息与通信工程
    • 109 篇 软件工程
    • 70 篇 控制科学与工程
    • 46 篇 仪器科学与技术
    • 43 篇 生物医学工程(可授...
    • 32 篇 测绘科学与技术
    • 32 篇 交通运输工程
    • 24 篇 土木工程
    • 21 篇 石油与天然气工程
    • 20 篇 机械工程
    • 20 篇 电子科学与技术(可...
    • 20 篇 环境科学与工程(可...
    • 13 篇 生物工程
    • 12 篇 网络空间安全
    • 11 篇 材料科学与工程(可...
    • 11 篇 动力工程及工程热...
  • 222 篇 理学
    • 97 篇 生物学
    • 48 篇 物理学
    • 45 篇 数学
    • 36 篇 化学
    • 28 篇 地球物理学
  • 186 篇 医学
    • 96 篇 临床医学
    • 67 篇 基础医学(可授医学...
    • 35 篇 特种医学
    • 10 篇 公共卫生与预防医...
  • 101 篇 管理学
    • 77 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 10 篇 公共管理
  • 24 篇 农学
  • 5 篇 法学
  • 4 篇 文学
  • 2 篇 经济学
  • 1 篇 教育学

主题

  • 1,875 篇 graph convolutio...
  • 264 篇 feature extracti...
  • 236 篇 accuracy
  • 200 篇 deep learning
  • 144 篇 predictive model...
  • 139 篇 training
  • 135 篇 convolution
  • 122 篇 data models
  • 114 篇 semantics
  • 100 篇 computational mo...
  • 83 篇 machine learning
  • 80 篇 correlation
  • 73 篇 data mining
  • 73 篇 adaptation model...
  • 67 篇 attention mechan...
  • 58 篇 representation l...
  • 58 篇 attention mechan...
  • 57 篇 robustness
  • 55 篇 task analysis
  • 54 篇 graph neural net...

机构

  • 9 篇 alibaba grp peop...
  • 9 篇 jiangsu univ sci...
  • 9 篇 nanjing univ sci...
  • 9 篇 peng cheng lab p...
  • 8 篇 univ chinese aca...
  • 8 篇 shandong normal ...
  • 8 篇 univ sci & techn...
  • 7 篇 beijing univ pos...
  • 7 篇 shanghai jiao to...
  • 7 篇 southwest univ c...
  • 7 篇 hunan univ coll ...
  • 6 篇 chinese acad sci...
  • 6 篇 zhejiang univ pe...
  • 6 篇 univ sci & techn...
  • 6 篇 tianjin univ col...
  • 6 篇 univ chinese aca...
  • 6 篇 xi an jiao tong ...
  • 6 篇 tsinghua univ pe...
  • 6 篇 school of cyber ...
  • 6 篇 jilin univ coll ...

作者

  • 9 篇 chen hao
  • 8 篇 liu weifeng
  • 7 篇 li xin
  • 7 篇 yang xibei
  • 7 篇 yang li
  • 7 篇 zhou yicong
  • 7 篇 wang jun
  • 7 篇 yan hui
  • 7 篇 fu sichao
  • 6 篇 wang wei
  • 6 篇 zhang yong
  • 6 篇 sahbi hichem
  • 5 篇 li yang
  • 5 篇 zhang kun
  • 5 篇 li yong
  • 5 篇 wang shiping
  • 5 篇 gao chen
  • 5 篇 wang senzhang
  • 5 篇 cao peng
  • 5 篇 yin baocai

语言

  • 1,851 篇 英文
  • 22 篇 其他
  • 2 篇 法文
  • 1 篇 德文
  • 1 篇 意大利文
  • 1 篇 土耳其文
检索条件"主题词=Graph Convolutional Networks"
1875 条 记 录,以下是1-10 订阅
排序:
graph convolutional networks-based method for uncertainty quantification of building design loads
收藏 引用
Building Simulation 2025年 第2期18卷 321-337页
作者: Jie Lu Zeyu Zheng Chaobo Zhang Yang Zhao Chenxin Feng Ruchi Choudhary Institute of Refrigeration and Cryogenics Zhejiang UniversityHangzhouChina Energy Efficient Cities Initiative Department of EngineeringUniversity of CambridgeCambridgeUK Department of Energy Engineering Zhejiang UniversityHangzhouChina Department of the Built Environment Eindhoven University of TechnologyEindhoventhe Netherlands Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province Jiaxing Research InstituteZhejiang UniversityJiaxingChina Data-centric Engineering The Alan Turing InstituteLondonUK
Uncertainty quantification of building design loads is essential to efficient and reliable building energy planning in the design *** data-driven methods struggle to generalize across buildings with diverse shapes due... 详细信息
来源: 评论
graph convolutional networks With Collaborative Feature Fusion for Sequential Recommendation
收藏 引用
IEEE TRANSACTIONS ON BIG DATA 2025年 第2期11卷 735-747页
作者: Gou, Jianping Cheng, Youhui Zhan, Yibing Yu, Baosheng Ou, Weihua Zhang, Yi Southwest Univ Coll Comp & Informat Sci Coll Software Chongqing 400715 Peoples R China Jiangsu Univ Sch Comp Sci & Commun Engn Zhenjiang 212013 Peoples R China JD Explore Acad Beijing 101111 Peoples R China Univ Sydney Sch Comp Sci Darlington NSW 2008 Australia Guizhou Normal Univ Sch Big Data & Comp Sci Guiyang 550003 Peoples R China Sichuan Univ Sch Comp Sci Chengdu Peoples R China
Sequential recommendation seeks to understand user preferences based on their past actions and predict future interactions with items. Recently, several techniques for sequential recommendation have emerged, primarily... 详细信息
来源: 评论
Leveraging graph convolutional networks for Semi-supervised Learning in Multi-view Non-graph Data
收藏 引用
COGNITIVE COMPUTATION 2025年 第2期17卷 1-15页
作者: Dornaika, F. Bi, J. Charafeddine, J. Univ Basque Country UPV EHU San Sebastian Spain Basque Fdn Sci Ikerbasque Bilbao Spain De Vinci Res Ctr De Vinci Higher Educ Paris France
Semi-supervised learning with a graph-based approach has gained prominence in machine learning, particularly in scenarios where labeling data involves substantial costs. graph convolution networks (GCNs) have found wi... 详细信息
来源: 评论
Community-Enhanced Dynamic graph convolutional networks for Rumor Detection on Social networks
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2025年 第2期12卷 818-831页
作者: Zhou, Wei Wang, Chenzhan Luo, Fengji Wang, Yu Gao, Min Wen, Junhao Chongqing Univ Sch Big Data & Software Engn Chongqing 400044 Peoples R China Univ Sydney Sch Civil Engn Sydney NSW 2006 Australia
Along with the increasing popularization of social platforms, rumors in the Web environment have become one of the significant threats to human society. Existing rumor detection methods ignore modeling and analyzing t... 详细信息
来源: 评论
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on graph convolutional networks
收藏 引用
Computers, Materials & Continua 2025年 第2期82卷 3179-3201页
作者: Baoquan Liu Xi Chen Qingjun Yuan Degang Li Chunxiang Gu School of Cyberspace Security Zhengzhou UniversityZhengzhou450002China School of Cyberspace Security Information Engineering UniversityZhengzhou450001China Henan Key Laboratory of Network Cryptography Technology Zhengzhou450001China
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... 详细信息
来源: 评论
Deep random walk inspired multi-view graph convolutional networks for semi-supervised classification
收藏 引用
APPLIED INTELLIGENCE 2025年 第6期55卷 1-14页
作者: Chen, Zexi Chen, Weibin Yao, Jie Li, Jinbo Wang, Shiping Fuzhou Univ Coll Comp & Data Sci Fuzhou 350116 Fujian Peoples R China Fuzhou Univ Fujian Prov Key Lab Network Comp & Intelligent Inf Fuzhou 350116 Fujian Peoples R China China Unicom Res Inst Beijing 100176 Peoples R China
Recent studies highlight the growing appeal of multi-view learning due to its enhanced generalization. Semi-supervised classification, using few labeled samples to classify the unlabeled majority, is gaining popularit... 详细信息
来源: 评论
An indicator-based multi-objective evolutionary algorithm assisted by improved graph convolutional networks
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2025年 94卷
作者: Yan, Pengguo Tian, Ye Liu, Yu Univ Sci & Technol Liaoning Sch Elect & Informat Engn Anshan 114051 Peoples R China Anhui Univ Sch Comp Sci & Technol Hefei 230601 Peoples R China
Recently, graph convolutional networks (GCN) have attracted significant attention due to their superior performance in handling non-Euclidean spaces, which enables GCN to model and analyze complex data structures that... 详细信息
来源: 评论
Determinate node selection for semi-supervised classification oriented graph convolutional networks
收藏 引用
INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION 2025年 第1期25卷 1-10页
作者: Xiao, Yao Xu, Ji Yang, Jing Li, Shaobo Wang, Guoyin Guizhou Univ State Key Lab Publ Big Data Guiyang 550025 Peoples R China Chongqing Univ Posts & Telecommun Chongqing Key Lab Computat Intelligence Chongqing 400065 Peoples R China
graph convolutional networks (GCNs) have been proved successful in the field of semi-supervised node classification by extracting structural information from graph data. However, the random selection of labelled nodes... 详细信息
来源: 评论
Vehicular Speed Prediction Method for Highway Scenarios Based on Spatiotemporal graph convolutional networks and Potential Field Theory
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2025年 第3期12卷 3330-3349页
作者: Li, Linheng An, Bocheng Zhang, Dapeng Gan, Rui Zhou, Zhi Qu, Xu Ran, Bin Southeast Univ Sch Transportat Nanjing 211189 Peoples R China Southeast Univ Inst Internet Mobil Nanjing 211189 Peoples R China Southeast Univ Univ Wisconsin Madison Nanjing 211189 Peoples R China Southeast Univ Jiangsu Prov Collaborat Innovat Ctr Modern Urban T Nanjing 211189 Peoples R China Southwestern Univ Finance & Econ Sch Management Sci & Engn Chengdu 611100 Peoples R China
Traffic flow analysis largely depends on accurate predictions of microscopic speed. Due to the complexity and stochastic of real-world driving environments, traditional model-driven methods face significant challenges... 详细信息
来源: 评论
Rethinking information fusion: Achieving adaptive information throughput and interaction pattern in graph convolutional networks for collaborative filtering
收藏 引用
INFORMATION FUSION 2025年 120卷
作者: Wu, Jiaxin Pang, Chenglong Chen, Guangxiong Wan, Jihong Ouyang, Xiaocao Zhao, Jie Guangdong Univ Technol Sch Management Guangzhou Guangdong Peoples R China Donghua Univ Sch Comp Sci & Technol Shanghai Peoples R China Guangdong Univ Technol Sch Comp Sci & Technol Guangzhou Guangdong Peoples R China Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China Southwestern Univ Finance & Econ Sch Comp & Artificial Intelligence Chengdu Peoples R China
graph convolutional networks (GCNs) are popular in collaborative filtering because they have robust information fusion mechanisms. However, existing GCN-based models generally treat all nodes uniformly within a bipart... 详细信息
来源: 评论