咨询与建议

限定检索结果

文献类型

  • 990 篇 会议
  • 896 篇 期刊文献
  • 4 篇 学位论文

馆藏范围

  • 1,890 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,226 篇 工学
    • 990 篇 计算机科学与技术...
    • 475 篇 电气工程
    • 158 篇 信息与通信工程
    • 111 篇 软件工程
    • 73 篇 控制科学与工程
    • 45 篇 仪器科学与技术
    • 43 篇 生物医学工程(可授...
    • 34 篇 交通运输工程
    • 32 篇 测绘科学与技术
    • 24 篇 电子科学与技术(可...
    • 24 篇 土木工程
    • 24 篇 石油与天然气工程
    • 21 篇 机械工程
    • 19 篇 环境科学与工程(可...
    • 13 篇 动力工程及工程热...
    • 13 篇 生物工程
    • 12 篇 网络空间安全
    • 11 篇 材料科学与工程(可...
  • 223 篇 理学
    • 97 篇 生物学
    • 50 篇 物理学
    • 46 篇 数学
    • 36 篇 化学
    • 27 篇 地球物理学
  • 182 篇 医学
    • 96 篇 临床医学
    • 67 篇 基础医学(可授医学...
    • 35 篇 特种医学
    • 10 篇 公共卫生与预防医...
  • 103 篇 管理学
    • 78 篇 管理科学与工程(可...
    • 21 篇 图书情报与档案管...
    • 10 篇 公共管理
  • 21 篇 农学
  • 4 篇 法学
  • 4 篇 文学
  • 3 篇 经济学
  • 1 篇 教育学

主题

  • 1,890 篇 graph convolutio...
  • 267 篇 feature extracti...
  • 240 篇 accuracy
  • 203 篇 deep learning
  • 144 篇 predictive model...
  • 140 篇 training
  • 136 篇 convolution
  • 123 篇 data models
  • 114 篇 semantics
  • 101 篇 computational mo...
  • 83 篇 machine learning
  • 81 篇 correlation
  • 73 篇 data mining
  • 73 篇 adaptation model...
  • 69 篇 attention mechan...
  • 59 篇 attention mechan...
  • 58 篇 robustness
  • 57 篇 representation l...
  • 56 篇 task analysis
  • 55 篇 graph neural net...

机构

  • 9 篇 alibaba grp peop...
  • 9 篇 jiangsu univ sci...
  • 9 篇 nanjing univ sci...
  • 9 篇 peng cheng lab p...
  • 8 篇 univ chinese aca...
  • 8 篇 shandong normal ...
  • 8 篇 univ sci & techn...
  • 7 篇 beijing univ pos...
  • 7 篇 shanghai jiao to...
  • 7 篇 southwest univ c...
  • 7 篇 hunan univ coll ...
  • 6 篇 chinese acad sci...
  • 6 篇 zhejiang univ pe...
  • 6 篇 univ sci & techn...
  • 6 篇 chinese acad sci...
  • 6 篇 tianjin univ col...
  • 6 篇 univ chinese aca...
  • 6 篇 xi an jiao tong ...
  • 6 篇 tsinghua univ pe...
  • 6 篇 school of cyber ...

作者

  • 9 篇 chen hao
  • 8 篇 liu weifeng
  • 7 篇 li xin
  • 7 篇 yang xibei
  • 7 篇 yang li
  • 7 篇 zhou yicong
  • 7 篇 wang jun
  • 7 篇 yan hui
  • 7 篇 fu sichao
  • 6 篇 wang wei
  • 6 篇 zhang yong
  • 6 篇 sahbi hichem
  • 5 篇 li yang
  • 5 篇 zhang kun
  • 5 篇 li yong
  • 5 篇 wang shiping
  • 5 篇 gao chen
  • 5 篇 wang senzhang
  • 5 篇 cao peng
  • 5 篇 yin baocai

语言

  • 1,866 篇 英文
  • 22 篇 其他
  • 2 篇 法文
  • 1 篇 德文
  • 1 篇 意大利文
  • 1 篇 土耳其文
检索条件"主题词=Graph Convolutional Networks"
1890 条 记 录,以下是51-60 订阅
排序:
Predicting Pest Infestation Patterns with graph convolutional networks (GCN) in Precision Farming
Predicting Pest Infestation Patterns with Graph Convolutiona...
收藏 引用
Automation and Computation (AUTOCOM), International Conference on
作者: Marri Sireesha Laith Hussein M. Manju Prashant Johri T. Kuppuraj Aanandha Saravanan K Department of Computer Science and Engineering CMR Technical Campus Hyderabad India Department of Computers Techniques Engineering College of technical engineering The Islamic University Najaf Iraq Department of Computer Science Kongu Arts and Science College Erode Tamilnadu India School of Computing Science and Engineering Galgotias University Greater Noida India Department of Computer Applications Karpagam Academy of Higher Education Coimbatore India Department of ECE Veltech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology Chennai India
Due to the increases pest impacts on agricultural productivity, effective pest prediction models are required for efficient pest control in precision farming. The framework outlined in this research uses a graph Convo... 详细信息
来源: 评论
graph convolutional networks for Semi-Supervised Image Segmentation
收藏 引用
IEEE ACCESS 2022年 10卷 104144-104155页
作者: Fabijanska, Anna Lodz Univ Technol Inst Appl Comp Sci PL-90537 Lodz Poland
The problem of image segmentation is one of the most significant ones in computer vision. Recently, deep-learning methods have dominated state-of-the-art solutions that automatically or interactively divide an image i... 详细信息
来源: 评论
graph convolutional networks of reconstructed graph structure with constrained Laplacian rank
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2022年 第24期81卷 34183-34194页
作者: Zhan, Mengmeng Gan, Jiangzhang Lu, Guangquan Wan, Yingying Guangxi Normal Univ Coll Comp Sci & Informat Technol Guilin 541004 Guangxi Peoples R China Massey Univ Sch Nat & Computat Sci Auckland Campus Auckland 0745 New Zealand
convolutional neural networks (CNNs) have achieved unprecedented competitiveness in text and two-dimensional image data processing because of its good accuracy performance and high detection speed. graph convolutional... 详细信息
来源: 评论
graph convolutional networks for Model-Based Learning in Nonlinear Inverse Problems
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2021年 7卷 1341-1353页
作者: Herzberg, William Rowe, Daniel B. Hauptmann, Andreas Hamilton, Sarah J. Marquette Univ Dept Math & Stat Sci Milwaukee WI 53233 USA Univ Oulu Res Unit Math Sci Oulu 90570 Finland UCL Dept Comp Sci London WC1E 6BT England
The majority of model-based learned image reconstruction methods in medical imaging have been limited to uniform domains, such as pixelated images. If the underlying model is solved on nonuniform meshes, arising from ... 详细信息
来源: 评论
graph convolutional networks: analysis, improvements and results
收藏 引用
APPLIED INTELLIGENCE 2022年 第8期52卷 9033-9044页
作者: Ullah, Ihsan Manzo, Mario Shah, Mitul Madden, Michael G. Univ Coll Dublin UCD CeADAR Irelands Ctr Appl AI Dublin Ireland Univ Naples LOrientale Informat Technol Serv I-80121 Naples Italy Natl Univ Ireland Sch Comp Sci Machine Learning & Data Min Grp Galway Ireland
A graph can represent a complex organization of data in which dependencies exist between multiple entities or activities. Such complex structures create challenges for machine learning algorithms, particularly when co... 详细信息
来源: 评论
graph convolutional networks with the self-attention mechanism for adaptive influence maximization in social networks
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2024年 第6期10卷 8383-8401页
作者: Tang, Jianxin Song, Shihui Du, Qian Yao, Yabing Qu, Jitao Lanzhou Univ Technol Sch Comp & Commun 287 Langongping Rd Lanzhou 730050 Peoples R China
The influence maximization problem that has drawn a great deal of attention from researchers aims to identify a subset of influential spreaders that can maximize the expected influence spread in social networks. Exist... 详细信息
来源: 评论
graph convolutional networks for traffic forecasting with missing values
收藏 引用
DATA MINING AND KNOWLEDGE DISCOVERY 2023年 第2期37卷 913-947页
作者: Zuo, Jingwei Zeitouni, Karine Taher, Yehia Garcia-Rodriguez, Sandra Technol Innovat Inst Abu Dhabi 9639 U Arab Emirates Univ Paris Saclay UVSQ DAVID Lab Versailles France CEA Data Anal & Syst Intelligence Lab LIST Gif Sur Yvette France
Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more ... 详细信息
来源: 评论
graph convolutional networks: a comprehensive review
收藏 引用
Computational Social networks 2019年 第1期6卷 1-23页
作者: Zhang, Si Tong, Hanghang Xu, Jiejun Maciejewski, Ross University of Illinois Urbana-Champaign Champaign United States HRL Laboratories LLC Malibu United States Arizona State University Tempe United States
graphs naturally appear in numerous application domains, ranging from social analysis, bioinformatics to computer vision. The unique capability of graphs enables capturing the structural relations among data, and thus... 详细信息
来源: 评论
graph convolutional networks for Student Answers Assessment  23rd
Graph Convolutional Networks for Student Answers Assessment
收藏 引用
23rd Annual International Conference on Text, Speech, and Dialogue (TSD)
作者: Khayi, Nisrine Ait Rus, Vasile Univ Memphis Inst Intelligent Syst Memphis TN 38152 USA
graph convolutional networks have achieved impressive results in multiple NLP tasks such as text classification. However, this approach has not been explored yet for the student answer assessment task. In this work, w... 详细信息
来源: 评论
graph convolutional networks Based on Neighborhood Expansion  7
Graph Convolutional Networks Based on Neighborhood Expansion
收藏 引用
7th International Conference on Electronic Information Technology and Computer Engineering (EITCE)
作者: Gong, Shengchao Weng, Wei Hou, Fengxia Lin, Dongsheng Wen, Juan Xiamen Univ Technol Xiamen Fujian Peoples R China Fujian Key Lab Pattern Recognit & Image Understan Xiamen Peoples R China Xiamen Univ Xiamen Fujian Peoples R China
graph neural networks (GNNs) are an efficient framework for learning graph-structured data and achieving state-of-the-art performance on many tasks, including node classification, link prediction, and graph classi-fic... 详细信息
来源: 评论