咨询与建议

限定检索结果

文献类型

  • 990 篇 会议
  • 896 篇 期刊文献
  • 4 篇 学位论文

馆藏范围

  • 1,890 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,226 篇 工学
    • 990 篇 计算机科学与技术...
    • 475 篇 电气工程
    • 158 篇 信息与通信工程
    • 111 篇 软件工程
    • 73 篇 控制科学与工程
    • 45 篇 仪器科学与技术
    • 43 篇 生物医学工程(可授...
    • 34 篇 交通运输工程
    • 32 篇 测绘科学与技术
    • 24 篇 电子科学与技术(可...
    • 24 篇 土木工程
    • 24 篇 石油与天然气工程
    • 21 篇 机械工程
    • 19 篇 环境科学与工程(可...
    • 13 篇 动力工程及工程热...
    • 13 篇 生物工程
    • 12 篇 网络空间安全
    • 11 篇 材料科学与工程(可...
  • 223 篇 理学
    • 97 篇 生物学
    • 50 篇 物理学
    • 46 篇 数学
    • 36 篇 化学
    • 27 篇 地球物理学
  • 182 篇 医学
    • 96 篇 临床医学
    • 67 篇 基础医学(可授医学...
    • 35 篇 特种医学
    • 10 篇 公共卫生与预防医...
  • 103 篇 管理学
    • 78 篇 管理科学与工程(可...
    • 21 篇 图书情报与档案管...
    • 10 篇 公共管理
  • 21 篇 农学
  • 4 篇 法学
  • 4 篇 文学
  • 3 篇 经济学
  • 1 篇 教育学

主题

  • 1,890 篇 graph convolutio...
  • 267 篇 feature extracti...
  • 240 篇 accuracy
  • 203 篇 deep learning
  • 144 篇 predictive model...
  • 140 篇 training
  • 136 篇 convolution
  • 123 篇 data models
  • 114 篇 semantics
  • 101 篇 computational mo...
  • 83 篇 machine learning
  • 81 篇 correlation
  • 73 篇 data mining
  • 73 篇 adaptation model...
  • 69 篇 attention mechan...
  • 59 篇 attention mechan...
  • 58 篇 robustness
  • 57 篇 representation l...
  • 56 篇 task analysis
  • 55 篇 graph neural net...

机构

  • 9 篇 alibaba grp peop...
  • 9 篇 jiangsu univ sci...
  • 9 篇 nanjing univ sci...
  • 9 篇 peng cheng lab p...
  • 8 篇 univ chinese aca...
  • 8 篇 shandong normal ...
  • 8 篇 univ sci & techn...
  • 7 篇 beijing univ pos...
  • 7 篇 shanghai jiao to...
  • 7 篇 southwest univ c...
  • 7 篇 hunan univ coll ...
  • 6 篇 chinese acad sci...
  • 6 篇 zhejiang univ pe...
  • 6 篇 univ sci & techn...
  • 6 篇 chinese acad sci...
  • 6 篇 tianjin univ col...
  • 6 篇 univ chinese aca...
  • 6 篇 xi an jiao tong ...
  • 6 篇 tsinghua univ pe...
  • 6 篇 school of cyber ...

作者

  • 9 篇 chen hao
  • 8 篇 liu weifeng
  • 7 篇 li xin
  • 7 篇 yang xibei
  • 7 篇 yang li
  • 7 篇 zhou yicong
  • 7 篇 wang jun
  • 7 篇 yan hui
  • 7 篇 fu sichao
  • 6 篇 wang wei
  • 6 篇 zhang yong
  • 6 篇 sahbi hichem
  • 5 篇 li yang
  • 5 篇 zhang kun
  • 5 篇 li yong
  • 5 篇 wang shiping
  • 5 篇 gao chen
  • 5 篇 wang senzhang
  • 5 篇 cao peng
  • 5 篇 yin baocai

语言

  • 1,866 篇 英文
  • 22 篇 其他
  • 2 篇 法文
  • 1 篇 德文
  • 1 篇 意大利文
  • 1 篇 土耳其文
检索条件"主题词=Graph Convolutional Networks"
1890 条 记 录,以下是81-90 订阅
排序:
AIGCN: Attack Intention Detection for Power System Using graph convolutional networks
收藏 引用
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY 2022年 第11期94卷 1119-1127页
作者: Tang, Qiuhang Chen, Huadong Ge, Binbin Wang, Haoyu China Energy Engn Grp ZHEJIANG Elect Power Design Hangzhou Zhejiang Peoples R China Beihang Univ Sch Comp Sci & Engn Beijing Peoples R China Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Beijing Peoples R China Univ Delaware Sch Comp Sci & Engn Delaware OH USA
Power systems have been attracting the attention of attackers because of its great value. Identifying attack intentions is essential for proactively blocking the intrusion into power information systems. In this paper... 详细信息
来源: 评论
MAGE: Automatic diagnosis of autism spectrum disorders using multi-atlas graph convolutional networks and ensemble learning
收藏 引用
NEUROCOMPUTING 2022年 469卷 346-353页
作者: Wang, Yufei Liu, Jin Xiang, Yizhen Wang, Jianxin Chen, Qingyong Chong, Jing Cent South Univ Sch Comp Sci & Engn Hunan Prov Key Lab Bioinformat Changsha 410083 Peoples R China China Mobile Chengdu Ind Res Inst Chengdu 610041 Peoples R China Mobile Hlth Minist Educ China Mobile Joint Lab Changsha 410008 Peoples R China
Currently, it is still a great challenge in clinical practice to accurately diagnose autism spectrum disorder (ASD). To address this challenge, in this study we propose a method for automatic diagnosis of ASD based on... 详细信息
来源: 评论
AMalNet: A deep learning framework based on graph convolutional networks for malware detection
收藏 引用
COMPUTERS & SECURITY 2020年 93卷
作者: Pei, Xinjun Yu, Long Tian, Shengwei Xinjiang Univ Sch Informat Sci & Engn Urumqi 830001 Xinjiang Peoples R China Xinjiang Univ Network Ctr Urumqi 830001 Xinjiang Peoples R China Xinjiang Univ Sch Software Urumqi 830001 Xinjiang Peoples R China
The increasing popularity of Android apps attracted widespread attention from malware authors. Traditional malware detection systems suffer from some shortcomings;computationally expensive, insufficient performance or... 详细信息
来源: 评论
Copy-Move Forgery Detection Technique Using graph convolutional networks Feature Extraction
收藏 引用
IEEE ACCESS 2024年 12卷 121675-121687页
作者: Shinde, Varun Dhanawat, Vineet Almogren, Ahmad Biswas, Anjanava Bilal, Muhammad Naqvi, Rizwan Ali Ur Rehman, Ateeq Cloudera Inc Austin TX 78701 USA Meta Platforms Inc Menlo Pk CA 94025 USA King Saud Univ Coll Comp & Informat Sci Dept Comp Sci Riyadh 11633 Saudi Arabia AWS AI & Machine Learning San Diego CA 92129 USA HITEC Univ Dept Comp Engn Taxila 47040 Pakistan Sejong Univ Dept AI & Robot Seoul 05006 South Korea Gachon Univ Sch Comp Seongnam 13120 South Korea
In the development of image forensics, detection of Copy-Move Forgery (CMF) has become a major challenge due to the proliferation of image forgery techniques. The CMF is widely utilized to alter the content of the ori... 详细信息
来源: 评论
Spatial-temporal short-term load forecasting framework via K-shape time series clustering method and graph convolutional networks
收藏 引用
ENERGY REPORTS 2022年 8卷 8752-8766页
作者: Wu, Zeqing Mu, Yunfei Deng, Shuai Li, Yang Tianjin Univ Key Lab Efficient Utilizat Low & Medium Grade Ener MOE Tianjin 300350 Peoples R China Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China
Load forecasting, especially short-term load forecasting, is of great significance to the safe operation of power grids and power system optimization. Historical data is commonly applied in the most of existing method... 详细信息
来源: 评论
Dual-domain graph convolutional networks for skeleton-based action recognition
收藏 引用
MACHINE LEARNING 2022年 第7期111卷 2381-2406页
作者: Chen, Shuo Xu, Ke Mi, Zhongjie Jiang, Xinghao Sun, Tanfeng Shanghai Jiao Tong Univ Sch Elect Informat & Elect Engn Shanghai Peoples R China
Skeleton-based action recognition is attracting more and more attention owing to the general representation ability of skeleton data. The graph convolutional networks (GCNs) methods extended from convolutional Neural ... 详细信息
来源: 评论
Exploiting node-feature bipartite graph in graph convolutional networks
收藏 引用
INFORMATION SCIENCES 2023年 628卷 409-423页
作者: Jiang, Yuli Lin, Huaijia Li, Ye Rong, Yu Cheng, Hong Huang, Xin Chinese Univ Hong Kong Hong Kong Peoples R China Hong Kong Baptist Univ Hong Kong Peoples R China Tencent AI Lab Shen Zhen Peoples R China
In recent years, graph convolutional networks (GCNs), which extend convolutional neural networks to graph structure, have achieved great success on many graph learning tasks by fusing structure and feature information... 详细信息
来源: 评论
Landmark Localization for Cephalometric Analysis Using Multiscale Image Patch-Based graph convolutional networks
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2022年 第7期26卷 3015-3024页
作者: Lu, Gang Zhang, Yuanxiu Kong, Youyong Zhang, Chen Coatrieux, Jean-Louis Shu, Huazhong Southeast Univ Lab Image Sci & Technol Nanjing 210096 Peoples R China Ctr Rech Informat Biomed Sino Francais F-35000 Rennes France Southeast Univ Jiangsu Prov Joint Int Res Lab Med Informat Proc Nanjing 210096 Peoples R China Nanjing Med Univ Jiangsu Prov Engn Res Ctr Stomatol Translat Med Affiliated Stomatol Hosp Nanjing 210029 Peoples R China Univ Rennes 1 Lab Traitement Signal & Image F-35000 Rennes France Natl Inst Hlth & Med Res F-35000 Rennes France
Accurate and robust cephalometric image analysis plays an essential role in orthodontic diagnosis, treatment assessment and surgical planning. This paper proposes a novel landmark localization method for cephalometric... 详细信息
来源: 评论
An Attention-Driven Multi-label Image Classification with Semantic Embedding and graph convolutional networks
收藏 引用
COGNITIVE COMPUTATION 2023年 第4期15卷 1308-1319页
作者: Sun, Dengdi Ma, Leilei Ding, Zhuanlian Luo, Bin Anhui Univ Sch Artificial Intelligence Key Lab Intelligent Comp & Signal Proc ICSP Minist Educ Hefei 230601 Peoples R China Anhui Univ Sch Comp Sci & Technol Anhui Prov Key Lab Multimodal Cognit Comp Hefei 230601 Peoples R China Anhui Univ Sch Internet Hefei 230039 Peoples R China
Multi-label image classification is a fundamental and vital task in computer vision. The latest methods are mostly based on deep learning and exhibit excellent performance in understanding images. However, in previous... 详细信息
来源: 评论
Simplified multilayer graph convolutional networks with dropout
收藏 引用
APPLIED INTELLIGENCE 2022年 第5期52卷 4776-4791页
作者: Yang, Fei Zhang, Huyin Tao, Shiming Wuhan Univ Sch Comp Sci Wuhan Peoples R China Minist Nat Resources Key Lab Urban Land Resources Monitoring & Simulat Shenzhen Peoples R China
graph convolutional networks (GCNs) and their variants are excellent deep learning methods for graph-structured data. Moreover, multilayer GCNs can perform feature smoothing repeatedly, which creates considerable perf... 详细信息
来源: 评论