咨询与建议

限定检索结果

文献类型

  • 290 篇 期刊文献
  • 117 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 408 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 366 篇 工学
    • 251 篇 计算机科学与技术...
    • 118 篇 电气工程
    • 52 篇 信息与通信工程
    • 39 篇 控制科学与工程
    • 35 篇 软件工程
    • 22 篇 交通运输工程
    • 17 篇 生物医学工程(可授...
    • 15 篇 机械工程
    • 13 篇 仪器科学与技术
    • 13 篇 土木工程
    • 13 篇 石油与天然气工程
    • 13 篇 环境科学与工程(可...
    • 12 篇 材料科学与工程(可...
    • 12 篇 动力工程及工程热...
    • 12 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 8 篇 测绘科学与技术
    • 7 篇 生物工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 安全科学与工程
  • 90 篇 理学
    • 42 篇 生物学
    • 18 篇 物理学
    • 18 篇 化学
    • 12 篇 数学
    • 10 篇 地球物理学
  • 52 篇 医学
    • 29 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 9 篇 特种医学
    • 5 篇 医学技术(可授医学...
  • 38 篇 管理学
    • 36 篇 管理科学与工程(可...
  • 12 篇 农学
  • 2 篇 教育学
  • 1 篇 经济学
  • 1 篇 文学

主题

  • 408 篇 graph convolutio...
  • 53 篇 deep learning
  • 29 篇 attention mechan...
  • 22 篇 feature extracti...
  • 20 篇 convolutional ne...
  • 15 篇 knowledge graph
  • 12 篇 machine learning
  • 11 篇 task analysis
  • 9 篇 fault diagnosis
  • 9 篇 traffic predicti...
  • 8 篇 node classificat...
  • 8 篇 convolution
  • 8 篇 predictive model...
  • 8 篇 emotion recognit...
  • 8 篇 data models
  • 7 篇 convolutional ne...
  • 6 篇 graph neural net...
  • 6 篇 action recogniti...
  • 6 篇 eeg
  • 6 篇 deep reinforceme...

机构

  • 5 篇 nanjing univ aer...
  • 4 篇 hunan univ coll ...
  • 3 篇 kunming univ sci...
  • 3 篇 kunming univ sci...
  • 3 篇 hunan univ sci &...
  • 3 篇 hefei comprehens...
  • 3 篇 nanjing univ pos...
  • 3 篇 southeast univ s...
  • 3 篇 fudan univ sch d...
  • 3 篇 shandong normal ...
  • 3 篇 korea univ dept ...
  • 3 篇 tsinghua univ de...
  • 3 篇 shanghai univ sc...
  • 2 篇 kunming univ sci...
  • 2 篇 tongji univ coll...
  • 2 篇 dalian univ tech...
  • 2 篇 mcgill univ dept...
  • 2 篇 guangdong univ t...
  • 2 篇 natl univ singap...
  • 2 篇 univ chinese aca...

作者

  • 6 篇 peng wei
  • 5 篇 dai wei
  • 4 篇 liang wei
  • 3 篇 jian wang
  • 3 篇 zhang lei
  • 3 篇 chen tielin
  • 3 篇 fu yanwei
  • 3 篇 hu na
  • 3 篇 li zhuwen
  • 3 篇 zhang dafang
  • 3 篇 han cheol e.
  • 3 篇 wang bin
  • 3 篇 huang liya
  • 3 篇 li qi
  • 3 篇 zhang yinda
  • 3 篇 xie kun
  • 2 篇 zhang yiling
  • 2 篇 zhao zhiguo
  • 2 篇 zhang yuhang
  • 2 篇 porras antonio r...

语言

  • 387 篇 英文
  • 15 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=Graph Convolutional Neural Network"
408 条 记 录,以下是51-60 订阅
排序:
Production Scheduling based on Deep Reinforcement Learning using graph convolutional neural network  12
Production Scheduling based on Deep Reinforcement Learning u...
收藏 引用
12th International Conference on Agents and Artificial Intelligence (ICAART)
作者: Seito, Takanari Munakata, Satoshi Hitachi Solut East Japan Ltd Tokyo Japan
While meeting frequently changing market needs, manufacturers are faced with the challenge of planning production schedules that achieve high overall performance of the factory and fulfil the high fill rate constraint... 详细信息
来源: 评论
Text classification problems via BERT embedding method and graph convolutional neural network
Text classification problems via BERT embedding method and g...
收藏 引用
International Conference on Advanced Technologies for Communications (ATC)
作者: Loc Tran Lam Pham Tuan Tran An Mai Paris Saclay Univ EPHE CHArt Lab Paris France Univ Informat Technol HCMC Ho Chi Minh City Vietnam Vietnam Natl Univ Ho Chi Minh City Vietnam Int Univ Dept Comp Sci & Engn Ho Chi Minh City Vietnam
This paper presents a hybrid technique of combining the BERT embedding method and the graph convolutional neural network. This combination is then employed to solve the text classification problem. Initially, we apply... 详细信息
来源: 评论
Identifying Biomarkers of Subjective Cognitive Decline Using graph convolutional neural network for fMRI Analysis  19
Identifying Biomarkers of Subjective Cognitive Decline Using...
收藏 引用
19th IEEE International Conference on Mechatronics and Automation (IEEE ICMA)
作者: Zhang, Zhao Li, Guangfei Niu, Jiaxi Du, Sihui Gao, Tianxin Liu, Weifeng Jiang, Zhenqi Tang, Xiaoying Xu, Yong Beijing Inst Technol Dept Biomed Engn 5 South Zhongguancun St Beijing Peoples R China Chinese Peoples Liberat Army Gen Hosp Dept Cardiol 28 Fuxing Rd Beijing Peoples R China
Subjective cognitive decline (SCD) is the preclinical stage of Alzheimer's disease (AD). People with SCD have a higher chance of developing mild cognitive impairment and AD than those aging normally. In the presen... 详细信息
来源: 评论
Research Proposal: Light Field Image Quality Assessment Method based on Deep graph convolutional neural network  13
Research Proposal: Light Field Image Quality Assessment Meth...
收藏 引用
13th ACM Multimedia Systems Conference (MMSys)
作者: Alamgeer, Sana Irshad, Muhammad Farias, Mylene C. Q. Univ Brasilia Dept Elect Engn Brasilia DF Brazil
This paper contains the research proposal of Sana Alamgeer that was presented at the MMSys 2022 doctoral symposium. Unlike regular images that represent only light intensities, Light Field (LF) contents carry informat... 详细信息
来源: 评论
A graph convolutional neural network Model for Trajectory Prediction  13
A Graph Convolutional Neural Network Model for Trajectory Pr...
收藏 引用
13th International Conference on graphics and Image Processing (ICGIP)
作者: Di, Zichao Zhou, Yue Chen, Kun Chen, Zongzhi Shanghai Jiao Tong Univ Shanghai Peoples R China Shanghai Aerosp Control Technol Inst Shanghai 201109 Peoples R China
This paper proposes a joint trajectory prediction algorithm based on graph neural networks and map scene information assistance. And proposed a kernel function to calculate the influence between different targets in t... 详细信息
来源: 评论
Measuring Decision Confidence Levels from EEG Using a Spectral-Spatial-Temporal Adaptive graph convolutional neural network  29th
Measuring Decision Confidence Levels from EEG Using a Spectr...
收藏 引用
29th International Conference on neural Information Processing
作者: Li, Rui Wang, Yiting Lu, Bao-Liang Shanghai Jiao Tong Univ Ctr Brain Comp & Machine Intelligence Dept Comp Sci & Engn Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ Key Lab Shanghai Educ Commiss Intelligent Interac Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ RuiJin Hosp Clin Neurosci Ctr RuiJin Mihoyo LabSch Med 197 RuiJin 2nd Rd Shanghai 200020 Peoples R China
Decision confidence can reflect the correctness of people's decisions to some extent. To measure the reliability of human decisions in an objective way, we introduce a spectral-spatial-temporal adaptive graph conv... 详细信息
来源: 评论
On the Design of Quantum graph convolutional neural network in the NISQ-Era and Beyond  40
On the Design of Quantum Graph Convolutional Neural Network ...
收藏 引用
IEEE 40th International Conference on Computer Design (ICCD)
作者: Hu, Zhirui Li, Jinyang Pan, Zhenyu Zhou, Shanglin Yang, Lei Ding, Caiwen Khan, Omer Geng, Tong Jiang, Weiwen George Mason Univ Fairfax VA 22030 USA Univ Rochester Rochester NY 14627 USA Univ Connecticut Storrs CT USA
The rapid growth in the size of graph convolutional neural networks (GCNs) encounters both computational- and memory-wall on classical computing platforms (e.g., CPU, GPU, FPGA, etc.). Quantum computing, on the other ... 详细信息
来源: 评论
A Robust graph convolutional neural network-Based Classifier for Automatic Modulation Recognition  18
A Robust Graph Convolutional Neural Network-Based Classifier...
收藏 引用
18th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC)
作者: Ghasemzadeh, Pejman Hempel, Michael Sharif, Hamid Univ Nebraska Lincoln Dept Elect & Comp Engn Adv Telecommun Engn Lab TEL Lincoln NE 68588 USA
The procedure of automatically recognizing the modulation scheme of the received signal without any knowledge of the communications parameters employed by the transmitter has gained tremendous attention for developing... 详细信息
来源: 评论
An Improved graph convolutional neural network based on graph Auto-encoder  16
An Improved Graph Convolutional Neural Network based on Grap...
收藏 引用
16th International Conference on Computer and Automation Engineering (ICCAE)
作者: Wang, Dongqi Du, Tianqi Liu, Zhongwu Chen, Dongming Ren, Tao Northeastern Univ Software Coll Shenyang Peoples R China
graph convolutional neural networks (GCN) is a rapidly advancing deep learning algorithm for learning graph representations. One limitation of GCN is that it cannot guarantee optimal low-pass characteristics, thus str... 详细信息
来源: 评论
Intermittent Fault Diagnosis Method Based On graph convolutional neural network  14
Intermittent Fault Diagnosis Method Based On Graph Convoluti...
收藏 引用
14th IEEE Global Reliability and Prognostics and Health Management Conference, PHM-Hangzhou 2023
作者: Shi, Junyou Zhou, Huidong Yang, Zhilin School of Reliability and Systems Engineering Beihang University Beijing China
Intermittent faults are widespread in various systems, which often greatly reduce the mean time to failure of the system, lead to the replacement of normal components, and increase unnecessary maintenance and support ... 详细信息
来源: 评论