咨询与建议

限定检索结果

文献类型

  • 19 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 22 篇 工学
    • 22 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 2 篇 信息与通信工程
    • 2 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 生物学
    • 1 篇 系统科学
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 1 篇 农学

主题

  • 23 篇 graph data augme...
  • 7 篇 graph neural net...
  • 5 篇 graph representa...
  • 4 篇 graph contrastiv...
  • 3 篇 graph neural net...
  • 3 篇 graph machine le...
  • 3 篇 graph classifica...
  • 2 篇 node classificat...
  • 2 篇 anomaly detectio...
  • 2 篇 self-supervised ...
  • 2 篇 semi-supervised ...
  • 2 篇 minimum descript...
  • 2 篇 gaussian mixture...
  • 1 篇 self-attention m...
  • 1 篇 class consistenc...
  • 1 篇 graph convolutio...
  • 1 篇 task analysis
  • 1 篇 invariant featur...
  • 1 篇 graph neural arc...
  • 1 篇 feature represen...

机构

  • 2 篇 sun yat sen univ...
  • 1 篇 guangzhou vocat ...
  • 1 篇 national key lab...
  • 1 篇 hong kong polyte...
  • 1 篇 sichuan univ nat...
  • 1 篇 department of co...
  • 1 篇 beijing univ tec...
  • 1 篇 univ sci & techn...
  • 1 篇 univ new south w...
  • 1 篇 kash inst elect ...
  • 1 篇 univ sci & techn...
  • 1 篇 univ notre dame ...
  • 1 篇 zhejiang univers...
  • 1 篇 tongji univ natl...
  • 1 篇 college of mathe...
  • 1 篇 minist educ key ...
  • 1 篇 zhejiang univers...
  • 1 篇 univ tokyo grad ...
  • 1 篇 northshore patho...
  • 1 篇 shandong normal ...

作者

  • 2 篇 xu linchuan
  • 2 篇 li yanjin
  • 2 篇 yamanishi kenji
  • 2 篇 chen weifu
  • 2 篇 qin peng
  • 1 篇 sui yongduo
  • 1 篇 pang shikang
  • 1 篇 yang hao
  • 1 篇 zhou kaibo
  • 1 篇 sun jie
  • 1 篇 feng ziliang
  • 1 篇 yan chungang
  • 1 篇 hu fuyang
  • 1 篇 zhao zhongying
  • 1 篇 pan zhisong
  • 1 篇 zeng aoting
  • 1 篇 wang shuyao
  • 1 篇 zhang min
  • 1 篇 qi huijing
  • 1 篇 zhenyu wen

语言

  • 23 篇 英文
检索条件"主题词=Graph Data Augmentation"
23 条 记 录,以下是1-10 订阅
排序:
Dynamic spatial-temporal graph-driven machine remaining useful life prediction method using graph data augmentation
收藏 引用
JOURNAL OF INTELLIGENT MANUFACTURING 2024年 第1期35卷 355-366页
作者: Yang, Chaoying Liu, Jie Zhou, Kaibo Li, Xinyu Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat MOE Key Lab Image Informat Proc & Intelligent Con Wuhan 430074 Peoples R China Huazhong Univ Sci & Technol Sch Civil & Hydraul Engn Wuhan 430074 Peoples R China Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Peoples R China
It is beneficial to maintain the normal operation of machines by conducting remaining useful life (RUL) prediction. Recently, graph data-driven machine RUL prediction methods have made a great success, since graph can... 详细信息
来源: 评论
graph Contrastive Learning with Constrained graph data augmentation
收藏 引用
NEURAL PROCESSING LETTERS 2023年 第8期55卷 10705-10726页
作者: Xu, Shaowu Wang, Luo Jia, Xibin Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China
Studies on graph contrastive learning, which is an effective way of self-supervision, have achieved excellent experimental performance. Most existing methods generate two augmented views, and then perform feature lear... 详细信息
来源: 评论
GMMDA: Gaussian mixture modeling of graph in latent space for graph data augmentation
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2024年 第12期66卷 7667-7695页
作者: Li, Yanjin Xu, Linchuan Yamanishi, Kenji Univ Tokyo Grad Sch Informat Sci & Technol Dept Math Informat 7-3-1 HongoBunkyo Ku Tokyo 1138656 Japan
graph data augmentation (GDA), which manipulates graph structure and/or attributes, has been demonstrated as an effective method for improving the generalization of graph neural networks on semi-supervised node classi... 详细信息
来源: 评论
Generalized heterophily graph data augmentation for node classification
收藏 引用
NEURAL NETWORKS 2023年 168卷 339-349页
作者: Tang, Bisheng Chen, Xiaojun Wang, Shaopu Xuan, Yuexin Zhao, Zhendong Univ Chinese Acad Sci Sch Cyber Secur Beijing 100190 Peoples R China Chinese Acad Sci Inst Informat Engn Shangdi St Shucun Rd 19 Beijing 100080 Peoples R China
graph data augmentations have demonstrated remarkable performance on homophilic graph neural networks (GNNs). Nevertheless, when transferred to a heterophilic graph, these augmentations are less effective for GNN mode... 详细信息
来源: 评论
GMMDA: Gaussian Mixture Modeling of graph in Latent Space for graph data augmentation  23
GMMDA: Gaussian Mixture Modeling of Graph in Latent Space fo...
收藏 引用
23rd IEEE International Conference on data Mining (IEEE ICDM)
作者: Li, Yanjin Xu, Linchuan Yamanishi, Kenji Univ Tokyo Grad Sch Informat Sci & Technol Dept Math Informat Tokyo Japan Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China
graph data augmentation (GDA), which manipulates graph structure and/or attributes, has been demonstrated as an effective method for improving the generalization of graph neural networks on semi -supervised node class... 详细信息
来源: 评论
A Simple data augmentation for graph Classification: A Perspective of Equivariance and Invariance
收藏 引用
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM data 2025年 第2期19卷 1-24页
作者: Sui, Yongduo Wang, Shuyao Sun, Jie Liu, Zhiyuan Cui, Qing Li, Longfei Zhou, Jun Wang, Xiang He, Xiangnan Univ Sci & Technol China Hefei Peoples R China Natl Univ Singapore Singapore Singapore Ant Grp Hangzhou Peoples R China
In graph classification, the out-of-distribution (OOD) issue is attracting great attention. To address this issue, a prevailing idea is to learn stable features, on the assumption that they are substructures causally ... 详细信息
来源: 评论
LeDA-GNN: Learnable dual augmentation for graph neural networks
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 268卷
作者: Liu, Gen Zhao, Zhongying Li, Chao Yu, Yanwei Shandong Univ Sci & Technol Coll Comp Sci & Engn Qingdao 266590 Shandong Peoples R China Shandong Univ Sci & Technol Coll Elect & Informat Engn Qingdao 266590 Shandong Peoples R China Ocean Univ China Coll Comp Sci & Technol Qingdao 266100 Shandong Peoples R China
graph Neural Networks (GNNs) have achieved remarkable success in various graph analyzing tasks. To handle the data sparsity and noise issues, data augmentation for GNNs is receiving a great deal of attention. However,... 详细信息
来源: 评论
Class-aware graph Siamese representation learning
收藏 引用
NEUROCOMPUTING 2025年 620卷
作者: Xu, Chengcheng Wang, Tianfeng Chen, Man Chen, Jun Pan, Zhisong Army Engn Univ PLA Command & Control Engn Coll Nanjing 210000 Jiangsu Peoples R China
Currently, two issues exist in the field of graph Siamese representation learning. First, the strategies for positive sample selection often impose strict constraints on the candidate set, which may result in critical... 详细信息
来源: 评论
Asymmetric augmented paradigm-based graph neural architecture search
收藏 引用
INFORMATION PROCESSING & MANAGEMENT 2025年 第1期62卷
作者: Wu, Zhenpeng Chen, Jiamin Al-Sabri, Raeed Oloulade, Babatounde Moctard Gao, Jianliang Cent South Univ Sch Comp Sci & Engn Changsha 410083 Hunan Peoples R China
In most scenarios of graph-based tasks, graph neural networks (GNNs) are trained end-to-end with labeled samples. Labeling graph samples, a time-consuming and expert-dependent process, leads to huge costs. graph data ... 详细信息
来源: 评论
Class-homophilic-based data augmentation for improving graph neural networks
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2023年 第1期269卷
作者: Duan, Rui Yan, Chungang Wang, Junli Jiang, Changjun Minist Educ Key Lab Embedded Syst & Serv Comp Shanghai 201804 Peoples R China Tongji Univ Natl Prov Minist Joint Collaborat Innovat Ctr Fin Shanghai 201804 Peoples R China Tongji Univ Shanghai 201804 Peoples R China
data augmentation has been shown to improve graph neural networks (GNNs). Existing graph data augmentation is achieved by adding or removing edges or changing the input node features due to graph data's complexity... 详细信息
来源: 评论