咨询与建议

限定检索结果

文献类型

  • 19 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 22 篇 工学
    • 22 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 2 篇 信息与通信工程
    • 2 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 生物学
    • 1 篇 系统科学
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 1 篇 农学

主题

  • 23 篇 graph data augme...
  • 7 篇 graph neural net...
  • 5 篇 graph representa...
  • 4 篇 graph contrastiv...
  • 3 篇 graph neural net...
  • 3 篇 graph machine le...
  • 3 篇 graph classifica...
  • 2 篇 node classificat...
  • 2 篇 anomaly detectio...
  • 2 篇 self-supervised ...
  • 2 篇 semi-supervised ...
  • 2 篇 minimum descript...
  • 2 篇 gaussian mixture...
  • 1 篇 self-attention m...
  • 1 篇 class consistenc...
  • 1 篇 graph convolutio...
  • 1 篇 task analysis
  • 1 篇 invariant featur...
  • 1 篇 graph neural arc...
  • 1 篇 feature represen...

机构

  • 2 篇 sun yat sen univ...
  • 1 篇 guangzhou vocat ...
  • 1 篇 national key lab...
  • 1 篇 hong kong polyte...
  • 1 篇 sichuan univ nat...
  • 1 篇 department of co...
  • 1 篇 beijing univ tec...
  • 1 篇 univ sci & techn...
  • 1 篇 univ new south w...
  • 1 篇 kash inst elect ...
  • 1 篇 univ sci & techn...
  • 1 篇 univ notre dame ...
  • 1 篇 zhejiang univers...
  • 1 篇 tongji univ natl...
  • 1 篇 college of mathe...
  • 1 篇 minist educ key ...
  • 1 篇 zhejiang univers...
  • 1 篇 univ tokyo grad ...
  • 1 篇 northshore patho...
  • 1 篇 shandong normal ...

作者

  • 2 篇 xu linchuan
  • 2 篇 li yanjin
  • 2 篇 yamanishi kenji
  • 2 篇 chen weifu
  • 2 篇 qin peng
  • 1 篇 sui yongduo
  • 1 篇 pang shikang
  • 1 篇 yang hao
  • 1 篇 zhou kaibo
  • 1 篇 sun jie
  • 1 篇 feng ziliang
  • 1 篇 yan chungang
  • 1 篇 hu fuyang
  • 1 篇 zhao zhongying
  • 1 篇 pan zhisong
  • 1 篇 zeng aoting
  • 1 篇 wang shuyao
  • 1 篇 zhang min
  • 1 篇 qi huijing
  • 1 篇 zhenyu wen

语言

  • 23 篇 英文
检索条件"主题词=Graph Data Augmentation"
23 条 记 录,以下是11-20 订阅
排序:
Heterogeneous data augmentation in graph contrastive learning for effective negative samples
收藏 引用
COMPUTERS & ELECTRICAL ENGINEERING 2024年 第PartA期118卷
作者: Ali, Adnan Li, Jinlong Chen, Huanhuan Univ Sci & Technol China Sch Comp Sci & Technol Jinzhai Rd Hefei 230026 Anhui Peoples R China
graph contrastive learning (GCL) aims to contrast positive-negative counterparts, whereas graph data augmentation (GDA) in GCL is employed to generate positive-negative samples. Existing GDA techniques, such as 1 -dim... 详细信息
来源: 评论
Towards data augmentation in graph neural network: An overview and evaluation
收藏 引用
COMPUTER SCIENCE REVIEW 2023年 47卷
作者: Adjeisah, Michael Zhu, Xinzhong Xu, Huiying Ayall, Tewodros Alemu Zhejiang Normal Univ Coll Math & Comp Sci Jinhua 321004 Peoples R China Beijing Geekplus Technol Co Ltd Artificial Intelligence Res Inst Beijing 100101 Peoples R China
Many studies on graph data augmentation (GDA) approaches have emerged. The techniques have rapidly improved performance for various graph neural network (GNN) models, increasing the current state-of-the-art accuracy b... 详细信息
来源: 评论
SMix-GNN:A Powerful graph Neural Network Enhanced by Aggregating graph Mixup and K-Reciprocal Nearest Neighbors
收藏 引用
Engineering Letters 2025年 第5期33卷 1723-1734页
作者: Rong, Minxi Zhang, Guipeng Guo, Xiaoli Sun, Qi Hu, Fuyang Qi, Huijing College of Mathematics and Information Science Zhengzhou University of Light Industry Zhengzhou 450000 China
Current methods for imbalanced graph classification often overlook the complex interplay between network topology and node attributes, which leads to the inadequate extraction of structural features by the model. Alth... 详细信息
来源: 评论
Invariant Risk Minimization augmentation for graph Contrastive Learning  7th
Invariant Risk Minimization Augmentation for Graph Contrasti...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Qin, Peng Chen, Weifu Sun Yat Sen Univ Sch Math Guangzhou Peoples R China Sun Yat Sen Univ Guangdong Prov Key Lab Computat Sci Guangzhou Peoples R China Guangzhou Maritime Univ Dept Comp Sci Guangzhou Peoples R China
Despite significant advancements in graph Contrastive Learning (GCL) in recent years, effective and interpretable graph data augmentation methods remain a challenge in the field. Traditional graph augmentation methods... 详细信息
来源: 评论
Explainability-based graph augmentation for out-of-distribution robustness in digital pathology
收藏 引用
Knowledge-Based Systems 2025年 320卷
作者: Heidari Gheshlaghi, Saba Aryal, Milan Yahya Soltani, Nasim Ganji, Masoud Department of Computer Science Marquette University MilwaukeeWI53233 United States Northshore Pathologists S.C. MilwaukeeWI53211 United States
Whole slide images (WSIs), which are high-resolution digital representations of tissue samples, present significant challenges for processing because of their gigapixel scale. Recent studies show that graph neural net... 详细信息
来源: 评论
Efficient and Effective augmentation Framework With Latent Mixup and Label-Guided Contrastive Learning for graph Classification
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND data ENGINEERING 2024年 第12期36卷 8066-8078页
作者: Zeng, Aoting Wang, Liping Zhang, Wenjie Lin, Xuemin East China Normal Univ Shanghai 200062 Peoples R China Univ New South Wales Sydney NSW 2052 Australia Shanghai Jiao Tong Univ Shanghai 200230 Peoples R China
Neural Networks (GNNs) with data augmentation obtain promising results among existing solutions for graph classification. Mixup-based augmentation methods for graph classification have already achieved state-of-the-ar... 详细信息
来源: 评论
CC-GNN: A Clustering Contrastive Learning Network for graph Semi-Supervised Learning
收藏 引用
IEEE ACCESS 2024年 12卷 71956-71969页
作者: Qin, Peng Chen, Weifu Zhang, Min Li, Defang Feng, Guocan Sun Yat Sen Univ Sch Math Guangzhou 510275 Peoples R China Sun Yat sen Univ Guangdong Prov Key Lab Guangzhou 510275 Peoples R China Guangzhou Maritime Univ Coll Informat & Telecommun Engn Guangzhou 510725 Peoples R China Guangzhou Vocat Coll Technol & Business Guangzhou 511442 Peoples R China
In graph modeling, scarcity of labeled data is a challenging issue. To address this issue, state-of-the-art graph models learn the representation of graph data via contrastive learning. Those models usually use data a... 详细信息
来源: 评论
Controlled graph neural networks with denoising diffusion for anomaly detection
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 第PartB期237卷
作者: Li, Xuan Xiao, Chunjing Feng, Ziliang Pang, Shikang Tai, Wenxin Zhou, Fan Sichuan Univ Natl Key Lab Fundamental Sci Synthet Vis Chengdu 610065 Peoples R China Henan Univ Sch Comp & Informat Engn Kaifeng 475000 Peoples R China Univ Elect Sci & Technol China Sch Informat & Software Engn Chengdu 610054 Peoples R China Kash Inst Elect & Informat Ind Kashi 844199 Peoples R China Sichuan Post & Telecommun Coll Chengdu 610067 Peoples R China
Leveraging labels in a supervised learning framework as prior knowledge to enhance network anomaly detection has become a trend. Unfortunately, just a few labels are typically available due to the expensive labeling c... 详细信息
来源: 评论
MVGCNMDA: Multi-view graph augmentation Convolutional Network for Uncovering Disease-Related Microbes
收藏 引用
INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES 2022年 第3期14卷 669-682页
作者: Hua, Meifang Yu, Shengpeng Liu, Tianyu Yang, Xue Wang, Hong Shandong Normal Univ Sch Informat Sci & Engn Jinan 250358 Peoples R China
Motivation: Exploring the interrelationships between microbes and disease can help microbiologists make decisions and plan treatments. Predicting new microbe-disease associations currently relies on biological experim... 详细信息
来源: 评论
Action Sequence augmentation for Early graph-based Anomaly Detection  21
Action Sequence Augmentation for Early Graph-based Anomaly D...
收藏 引用
30th ACM International Conference on Information and Knowledge Management (CIKM)
作者: Zhao, Tong Ni, Bo Yu, Wenhao Guo, Zhichun Shah, Neil Jiang, Meng Univ Notre Dame Notre Dame IN 46556 USA Snap Inc Santa Monica CA USA
The proliferation of web platforms has created incentives for online abuse. Many graph-based anomaly detection techniques are proposed to identify the suspicious accounts and behaviors. However, most of them detect th... 详细信息
来源: 评论