咨询与建议

限定检索结果

文献类型

  • 19 篇 期刊文献
  • 13 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 33 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 27 篇 计算机科学与技术...
    • 14 篇 电气工程
    • 3 篇 软件工程
    • 2 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 1 篇 公共卫生与预防医...
  • 2 篇 理学
    • 2 篇 物理学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 33 篇 graph data minin...
  • 5 篇 graph neural net...
  • 5 篇 graph neural net...
  • 4 篇 task analysis
  • 4 篇 adversarial atta...
  • 3 篇 self-supervised ...
  • 3 篇 network science
  • 3 篇 k-core decomposi...
  • 3 篇 graph representa...
  • 2 篇 aggregates
  • 2 篇 node classificat...
  • 2 篇 k-core robustnes...
  • 2 篇 image edge detec...
  • 2 篇 contrastive lear...
  • 2 篇 topology
  • 2 篇 social networkin...
  • 2 篇 security
  • 2 篇 social network
  • 2 篇 data models
  • 1 篇 complex networks

机构

  • 4 篇 zhejiang univ te...
  • 3 篇 zhejiang inst co...
  • 3 篇 xidian univ sch ...
  • 2 篇 zhejiang univers...
  • 2 篇 tianjin univ col...
  • 2 篇 xidian univ sch ...
  • 2 篇 binjiang cybersp...
  • 2 篇 pcl res ctr netw...
  • 1 篇 chinese acad sci...
  • 1 篇 fairfield univ c...
  • 1 篇 baidu inc people...
  • 1 篇 univ politcn mad...
  • 1 篇 shanghai engn re...
  • 1 篇 tsinghua univ de...
  • 1 篇 seoul natl univ ...
  • 1 篇 shandong fundame...
  • 1 篇 georgia state un...
  • 1 篇 natl engn lab bi...
  • 1 篇 qilu univ techno...
  • 1 篇 univ chinese aca...

作者

  • 4 篇 wang jinhuan
  • 4 篇 xuan qi
  • 3 篇 wu yue
  • 3 篇 gong maoguo
  • 3 篇 lv yuqian
  • 3 篇 fan xiaolong
  • 3 篇 zhou bo
  • 2 篇 yu shanqing
  • 2 篇 sheng zhou
  • 2 篇 jiajun bu
  • 1 篇 yuanchen bei
  • 1 篇 zhang ran
  • 1 篇 wang xuezhi
  • 1 篇 liu yunhui
  • 1 篇 wang jiahui
  • 1 篇 wang wenjun
  • 1 篇 li zhao
  • 1 篇 zhao jianhua
  • 1 篇 he tieke
  • 1 篇 yang haoran

语言

  • 31 篇 英文
  • 2 篇 其他
检索条件"主题词=Graph Data Mining"
33 条 记 录,以下是1-10 订阅
排序:
Investigating Natural and Artificial Dynamics in graph data mining and Machine Learning  23
Investigating Natural and Artificial Dynamics in Graph Data ...
收藏 引用
32nd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Fu, Dongqi Univ Illinois Dept Comp Sci Urbana IL 61801 USA
The complexity of relationships between entities is increasing in the era of big data, leading to a growing interest in graph (network) data, owing to its ability to encode intricate relational information. graph data... 详细信息
来源: 评论
graph data mining in Recommender Systems  22nd
Graph Data Mining in Recommender Systems
收藏 引用
22nd International Conference on Web Information Systems Engineering (WISE)
作者: Chen, Hongxu Li, Yicong Yang, Haoran Univ Technol Sydney Sydney NSW Australia
With the rapid development of e-commerce, massive data is generated from various e-commerce platforms. Most of the generated data can be represented in the forms of graph, which is capable to demonstrate the complicat... 详细信息
来源: 评论
Temporal Feature mining in Dynamic graph of Brain Connectivity data
Temporal Feature Mining in Dynamic Graph of Brain Connectivi...
收藏 引用
2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
作者: Liu, Tao Jing, Ming Zhang, Guangwei Zhang, Li Yu, Jiguo School of Computer Science and Technology Qilu University of Technology Jinan China Big Data Institute Qilu University of Technology Jinan China Shandong Fundamental Research Center for Computer Science Jinan China
In recent years, the graph feature mining method of brain connection data based on graph theory has been regarded as a popular and universal technology in the field of neuroscience. How to mine valuable information fr... 详细信息
来源: 评论
data-Driven Dynamic graph Convolution Transformer Network Model for EEG Emotion Recognition Under IoMT Environment
收藏 引用
BIG data mining AND ANALYTICS 2025年 第3期8卷 712-725页
作者: Jin, Xing Zhu, Fa Shen, Yu Jeon, Gwanggil Camacho, David Nanjing Forestry Univ Coll Informat Sci & Technol & Artificial Intellige Coinnovat Ctr Sustainable Forestry Southern China Nanjing 210037 Peoples R China Nanjing Forestry Univ Coinnovat Ctr Sustainable Forestry Southern China State Key Lab Tree Genet & Breeding Nanjing 210037 Peoples R China Incheon Natl Univ Dept Embedded Syst Engn Incheon 22012 South Korea Univ Politcn Madrid Comp Syst Engn Dept Madrid 28660 Spain
With the rapid progress in data-driven approaches, artificial intelligence, and big data analytics technologies, utilizing electroencephalogram (EEG) signals for emotion analysis in the field of the Internet of Medica... 详细信息
来源: 评论
Negative-Free Self-Supervised Gaussian Embedding of graphs
收藏 引用
NEURAL NETWORKS 2025年 181卷 106846页
作者: Liu, Yunhui He, Tieke Zheng, Tao Zhao, Jianhua Nanjing Univ State Key Lab Novel Software Technol Nanjing 210023 Peoples R China
graph Contrastive Learning (GCL) has recently emerged as a promising graph self-supervised learning framework for learning discriminative node representations without labels. The widely adopted objective function of G... 详细信息
来源: 评论
graph Representation Learning via Contrasting Cluster Assignments
收藏 引用
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 2024年 第3期16卷 912-922页
作者: Zhang, Chun-Yang Yao, Hong-Yu Chen, C. L. Philip Lin, Yue-Na Fuzhou Univ Coll Comp & Data Sci Fuzhou 350002 Peoples R China South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Guangdong Peoples R China
With the rise of contrastive learning, unsupervised graph representation learning (GRL) has shown strong competitiveness. However, existing graph contrastive models typically either focus on the local view of graphs o... 详细信息
来源: 评论
Targeted k-node collapse problem: Towards understanding the robustness of local k-core structure
收藏 引用
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS 2024年 641卷
作者: Lv, Yuqian Zhou, Bo Wang, Jinhuan Xuan, Qi Zhejiang Univ Technol Inst Cyberspace Secur Coll Informat Engn Hangzhou 310023 Peoples R China Binjiang Cyberspace Secur Inst ZJUT Hangzhou 310056 Peoples R China Zhejiang Inst Commun Dept Intelligent Control Hangzhou 311112 Peoples R China Qilu Univ Technol Shandong Acad Sci Key Lab Comp Power Network & Informat Secur Minist Educ Jinan 250353 Peoples R China
The concept of k-core, which indicates the largest induced subgraph where each node has k or more neighbors, plays a significant role in measuring the cohesiveness and engagement of a network, and it is exploited in d... 详细信息
来源: 评论
DeepInsight: Topology Changes Assisting Detection of Adversarial Samples on graphs
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2024年 第1期11卷 76-88页
作者: Zhu, Junhao Wang, Jinhuan Shan, Yalu Yu, Shanqing Chen, Guanrong Xuan, Qi Zhejiang Univ Technol Inst Cyberspace Secur Coll Informat Engn Hangzhou 310023 Peoples R China City Univ Hong Kong Dept Elect Engn Hong Kong Peoples R China PCL Res Ctr Networks & Commun Peng Cheng Lab Shenzhen 518000 Peoples R China Utron Technol Corp Ltd Hangzhou Qianjiang Distinguished Expert Hangzhou 310056 Peoples R China
With the rapid development of artificial intelligence, a number of machine learning algorithms, such as graph neural networks (GNNs), have been proposed to facilitate network analysis or graph data mining. Although ef... 详细信息
来源: 评论
MONA: An Efficient and Scalable Strategy for Targeted k-Nodes Collapse
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS 2024年 第6期71卷 3106-3110页
作者: Lv, Yuqian Zhou, Bo Wang, Jinhuan Yu, Shanqing Xuan, Qi Zhejiang Univ Technol Inst Cyberspace Secur Coll Informat Engn Hangzhou 310023 Peoples R China Binjiang Cyberspace Secur Inst ZJUT Hangzhou 310056 Peoples R China Zhejiang Inst Commun Dept Intelligent Control Hangzhou 311112 Peoples R China
The concept of k -core plays an important role in measuring the cohesiveness and engagement of a network. And recent studies have shown the vulnerability of k -core under adversarial attacks. However, there are few re... 详细信息
来源: 评论
Disentangled graph Contrastive Learning With Independence Promotion
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND data ENGINEERING 2023年 第8期35卷 7856-7869页
作者: Li, Haoyang Zhang, Ziwei Wang, Xin Zhu, Wenwu Tsinghua Univ Dept Comp Sci & Technol Beijing 100084 Peoples R China
Self-supervised learning for graph neural networks has attracted considerable attention and shows notable successes in graph representation learning. However, the formation of a real-world graph typically arises from ... 详细信息
来源: 评论