咨询与建议

限定检索结果

文献类型

  • 7 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 11 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 10 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 交通运输工程
    • 1 篇 软件工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 理学
    • 1 篇 科学技术史(分学科...

主题

  • 11 篇 graph datasets
  • 3 篇 graph neural net...
  • 3 篇 graph classifica...
  • 2 篇 sequence similar...
  • 2 篇 high-performance...
  • 2 篇 biological netwo...
  • 1 篇 dataset evaluati...
  • 1 篇 shapley values
  • 1 篇 graph partitioni...
  • 1 篇 parallelism
  • 1 篇 graph algorithms
  • 1 篇 message systems
  • 1 篇 deep learning
  • 1 篇 information diss...
  • 1 篇 ensemble of embe...
  • 1 篇 big data managem...
  • 1 篇 information diss...
  • 1 篇 social networks
  • 1 篇 graph constructi...
  • 1 篇 past graph struc...

机构

  • 1 篇 fudan univ sch c...
  • 1 篇 queen's universi...
  • 1 篇 centai inst turi...
  • 1 篇 deakin univ sch ...
  • 1 篇 university of si...
  • 1 篇 ibm tj watson re...
  • 1 篇 gaston berger un...
  • 1 篇 donghua univ sch...
  • 1 篇 chinese acad sci...
  • 1 篇 univ copenhagen ...
  • 1 篇 mila university ...
  • 1 篇 univ warwick dep...
  • 1 篇 beihang univ peo...
  • 1 篇 huazhong univ sc...
  • 1 篇 wuhan univ peopl...
  • 1 篇 univ versailles ...
  • 1 篇 nanyang technolo...
  • 1 篇 univ sistan zahe...
  • 1 篇 loyola marymount...
  • 1 篇 national univers...

作者

  • 2 篇 vandierendonck h...
  • 2 篇 vigna sebastiano
  • 2 篇 kilpatrick peter
  • 2 篇 boldi paolo
  • 1 篇 peng hao
  • 1 篇 vijay prakash dw...
  • 1 篇 gao shang
  • 1 篇 tiba attila
  • 1 篇 liu bo
  • 1 篇 ari ado adamou a...
  • 1 篇 he ligang
  • 1 篇 aggarwal charu
  • 1 篇 lio pietro
  • 1 篇 anh tuan luu
  • 1 篇 zheng zhigao
  • 1 篇 robles-kelly ant...
  • 1 篇 wu jia
  • 1 篇 yang zhenyu
  • 1 篇 xavier bresson
  • 1 篇 bajardi paolo

语言

  • 11 篇 英文
检索条件"主题词=Graph Datasets"
11 条 记 录,以下是1-10 订阅
排序:
On Overcoming HPC Challenges of Trillion-Scale Real-World graph datasets
On Overcoming HPC Challenges of Trillion-Scale Real-World Gr...
收藏 引用
2023 IEEE International Conference on Big Data, BigData 2023
作者: Koohi Esfahani, Mohsen Boldi, Paolo Vandierendonck, Hans Kilpatrick, Peter Vigna, Sebastiano Queen's University Belfast United Kingdom University of Sistan Iran Università Degli Studi di Milano Italy
Progress in High-Performance Computing in general, and High-Performance graph Processing in particular, is highly dependent on the availability of publicly-accessible, relevant, and realistic data sets. To ensure cont... 详细信息
来源: 评论
State of the Art and Potentialities of graph-level Learning
收藏 引用
ACM COMPUTING SURVEYS 2025年 第2期57卷 1-40页
作者: Yang, Zhenyu Zhang, Ge Wu, Jia Yang, Jian Sheng, Quan z. Xue, Shan Zhou, Chuan Aggarwal, Charu Peng, Hao Hu, Wenbin Hancock, Edwin Lio, Pietro Macquarie Univ Sch Comp Sydney NSW Australia Donghua Univ Sch Comp Shanghai Peoples R China Macquarie Univ Sch Comp Sydney NSW Australia Chinese Acad Sci Beijing Peoples R China IBM TJ Watson Res Ctr Off 4S A20 Hawthorne NY USA Beihang Univ Beijing Peoples R China Wuhan Univ Wuhan Peoples R China Univ York York England Univ Cambridge Cambridge England
graphs have a superior ability to represent relational data, such as chemical compounds, proteins, and social networks. Hence, graph-level learning, which takes a set of graphs as input, has been applied to many tasks... 详细信息
来源: 评论
Finding Efficient graph Embeddings and Processing them by a CNN-based Tool
收藏 引用
NEURAL PROCESSING LETTERS 2024年 第5期56卷 226页
作者: Tiba, Attila Hajdu, Andras Giraszi, Tamas Univ Debrecen Fac Informat Kassa Str 26 H-4028 Hajdu Bihar Hungary
We introduce new tools to support finding efficient graph embedding techniques for graph databases and to process their outputs using deep learning for classification scenarios. Accordingly, we investigate the possibi... 详细信息
来源: 评论
Value is in the Eye of the Beholder: A Framework for an Equitable graph Data Evaluation  24
Value is in the Eye of the Beholder: A Framework for an Equi...
收藏 引用
6th ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT)
作者: Nerini, Francesco Paolo Bajardi, Paolo Panisson, Andre Sapienza Univ Rome DIAG Rome Italy CENTAI Inst Turin Italy
Proprietary data is a valuable asset used to develop predictive algorithms that benefit a wide range of users, including customers, business owners, and decision-makers. Consequently, there is a growing interest in de... 详细信息
来源: 评论
graph partitioning and visualization in graph mining: a survey
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2022年 第30期81卷 43315-43356页
作者: Bhavsar, Swati A. Patil, Varsha H. Patil, Aboli H. SavitribaiPhule Pune Univ MCERC Res Ctr Dept Comp Engn Nasik India
graph mining is a process of obtaining one or more sub-graphs and has been a very attractive research topic over the last two decades. It has found many practical applications dealing with real world problems in varie... 详细信息
来源: 评论
Dataset Announcement: MS-Biographs, Trillion-Scale Public Real-World Sequence Similarity graphs  26
Dataset Announcement: MS-BioGraphs, Trillion-Scale Public Re...
收藏 引用
26th IEEE International Symposium on Workload Characterization (IISWC)
作者: Esfahani, Mohsen Koohi Boldi, Paolo Vandierendonck, Hans Kilpatrick, Peter Vigna, Sebastiano Queens Univ Belfast Belfast Antrim North Ireland Univ Milan Milan Italy Univ Sistan Zahedan Iran
Progress in High-Performance Computing in general, and High-Performance graph Processing in particular, is highly dependent on the availability of publicly-accessible, relevant, and realistic data sets. In this paper,... 详细信息
来源: 评论
Guarantees of Differential Privacy in Cloud of Things: A Multilevel Data Publication Scheme
收藏 引用
INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH IN AFRICA 2021年 第1期56卷 199-212页
作者: Ngangmo, Olga Kengni Ari, Ado Adamou Abba Mohamadou, BAlidou Thiare, Ousmane Kolyang Univ Maroua LaRI Lab POB 814 Maroua Cameroon Univ Versailles St Quentin En Yvelines Univ Paris Saclay LI PaRAD Lab 45 Ave Etats Unis F-78035 Versailles France Gaston Berger Univ St Louis LANI Lab POB 234 St Louis Senegal
Nowadays, the cloud computing technology combined with the new generation networks and internet of things facilitate the networking of numerous smart devices. Moreover, the advent of the smart web requires massive dat... 详细信息
来源: 评论
graph classification via discriminative edge feature learning
收藏 引用
PATTERN RECOGNITION 2023年 第1期143卷
作者: Yi, Yang Lu, Xuequan Gao, Shang Robles-Kelly, Antonio Zhang, Yuejie Deakin Univ Sch Informat Technol Waurn Ponds Vic 3216 Australia Fudan Univ Sch Comp Sci Shanghai 200433 Peoples R China
Spectral graph convolutional neural networks (GCNNs) have been producing encouraging results in graph classification tasks. However, most spectral GCNNs utilize fixed graphs when aggregating node features while omitti... 详细信息
来源: 评论
Benchmarking graph neural networks
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2023年 第1期24卷 1730-1777页
作者: Vijay Prakash Dwivedi Chaitanya K. Joshi Anh Tuan Luu Thomas Laurent Yoshua Bengio Xavier Bresson Nanyang Technological University Singapore University of Cambridge UK Loyola Marymount University Mila University of Montréal Canada National University of Singapore
In the last few years, graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. This emerging field has witnessed an extensive growth of promising techniques that h... 详细信息
来源: 评论
graph Processing on GPUs: A Survey
收藏 引用
ACM COMPUTING SURVEYS 2018年 第6期50卷 1-35页
作者: Shi, Xuanhua Zheng, Zhigao Zhou, Yongluan Jin, Hai He, Ligang Liu, Bo Hua, Qiang-Sheng Huazhong Univ Sci & Technol Sch Comp Sci & Technol Serv Comp Technol & Syst Lab Big Data Technol & Syst Lab 1037Luoyu Rd Wuhan Hubei Peoples R China Univ Copenhagen Dept Comp Sci Univ Pk 5 DK-2100 Copenhagen Denmark Univ Warwick Dept Comp Sci Coventry CV4 7AL W Midlands England
In the big data era, much real-world data can be naturally represented as graphs. Consequently, many application domains can be modeled as graph processing. graph processing, especially the processing of the large-sca... 详细信息
来源: 评论