咨询与建议

限定检索结果

文献类型

  • 7 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 12 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 工学
    • 10 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 化学工程与技术
  • 3 篇 理学
    • 2 篇 生物学
    • 1 篇 化学
  • 2 篇 农学

主题

  • 12 篇 graph generative...
  • 2 篇 de novo drug des...
  • 2 篇 temporal network...
  • 1 篇 graph neural net...
  • 1 篇 temporal walks
  • 1 篇 molecular graph ...
  • 1 篇 temporal graph
  • 1 篇 molecular metabo...
  • 1 篇 long-read analys...
  • 1 篇 alignment-free a...
  • 1 篇 variational auto...
  • 1 篇 deep learning
  • 1 篇 task analysis
  • 1 篇 pretraining
  • 1 篇 compounds
  • 1 篇 information mini...
  • 1 篇 drugs
  • 1 篇 graph conditiona...
  • 1 篇 neural networks
  • 1 篇 temporal motifs

机构

  • 1 篇 univ buffalo buf...
  • 1 篇 univ illinois ur...
  • 1 篇 king abdullah un...
  • 1 篇 chinese acad sci...
  • 1 篇 chinese univ hon...
  • 1 篇 northwestern pol...
  • 1 篇 beijing univ pos...
  • 1 篇 peking univ sch ...
  • 1 篇 texas a&m univ c...
  • 1 篇 indian inst tech...
  • 1 篇 weill cornell me...
  • 1 篇 max planck inst ...
  • 1 篇 free univ berlin...
  • 1 篇 univ chinese aca...
  • 1 篇 george mason uni...
  • 1 篇 free univ berlin...
  • 1 篇 northwestern pol...
  • 1 篇 emory univ atlan...
  • 1 篇 max planck inst ...
  • 1 篇 nanyang technol ...

作者

  • 1 篇 ma changsheng
  • 1 篇 luo tianze
  • 1 篇 pan chenxu
  • 1 篇 heller david
  • 1 篇 cai yunpeng
  • 1 篇 ji chaojie
  • 1 篇 qin shan
  • 1 篇 pan sinno jialin
  • 1 篇 chen tianlong
  • 1 篇 zang chengxi
  • 1 篇 mo zhanfeng
  • 1 篇 zheng yijia
  • 1 篇 shen yang
  • 1 篇 ling chen
  • 1 篇 wu hongyan
  • 1 篇 liu zhenming
  • 1 篇 zhao peng-cheng
  • 1 篇 zhang liming
  • 1 篇 wang zhangyang
  • 1 篇 zhang xiangliang

语言

  • 12 篇 英文
检索条件"主题词=Graph Generative Model"
12 条 记 录,以下是1-10 订阅
排序:
MTGGF: A Metabolism Type-Aware graph generative model for Molecular Metabolite Prediction
收藏 引用
INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES 2025年 1-13页
作者: Zhao, Peng-Cheng Wei, Xue-Xin Wang, Qiong Wang, Hao-Yang Du, Bing-Xue Li, Jia-Ning Zhu, Bei Yu, Hui Shi, Jian-Yu Northwestern Polytech Univ Sch Life Sci Xian 710072 Peoples R China Northwestern Polytech Univ Sch Comp Sci Xian 710072 Peoples R China
Metabolism in vivo turns small molecules (e.g., drugs) into metabolites (new molecules), which brings unexpected safety issues in drug development. However, it is costly to determine metabolites by biological assays. ... 详细信息
来源: 评论
A Data-Driven graph generative model for Temporal Interaction Networks  20
A Data-Driven Graph Generative Model for Temporal Interactio...
收藏 引用
26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
作者: Zhou, Dawei Zheng, Lecheng Han, Jiawei He, Jingrui Univ Illinois Urbana IL 61801 USA
Deep graph generative models have recently received a surge of attention due to its superiority of modeling realistic graphs in a variety of domains, including biology, chemistry, and social science. Despite the initi... 详细信息
来源: 评论
Multi-objective de novo drug design with conditional graph generative model
收藏 引用
JOURNAL OF CHEMINFORMATICS 2018年 第1期10卷 33-33页
作者: Li, Yibo Zhang, Liangren Liu, Zhenming Peking Univ Sch Pharmaceut Sci State Key Lab Nat & Biomimet Drugs Xueyuan Rd 38 Beijing 100191 Peoples R China
Recently, deep generative models have revealed itself as a promising way of performing de novo molecule design. However, previous research has focused mainly on generating SMILES strings instead of molecular graphs. A... 详细信息
来源: 评论
Fast graph Generation via Spectral Diffusion
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024年 第5期46卷 3496-3508页
作者: Luo, Tianze Mo, Zhanfeng Pan, Sinno Jialin Nanyang Technol Univ Singapore 639798 Singapore Chinese Univ Hong Kong Hong Kong Peoples R China
Generating graph-structured data is a challenging problem, which requires learning the underlying distribution of graphs. Various models such as graph VAE, graph GANs, and graph diffusion models have been proposed to ... 详细信息
来源: 评论
graph Polish: A Novel graph Generation Paradigm for Molecular Optimization
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023年 第5期34卷 2323-2337页
作者: Ji, Chaojie Zheng, Yijia Wang, Ruxin Cai, Yunpeng Wu, Hongyan Chinese Acad Sci Shenzhen Inst Adv Technol Joint Engn Res Ctr Hlth Big Data Intelligent Anal Shenzhen 518055 Peoples R China Univ Chinese Acad Sci Shenzhen Inst Adv Technol Chinese Acad Sci Dept Comp Sci & Technol Shenzhen 518055 Peoples R China
Molecular optimization, which transforms a given input molecule X into another Y with desired properties, is essential in molecular drug discovery. The traditional approaches either suffer from sample-inefficient lear... 详细信息
来源: 评论
Bringing Your Own View: graph Contrastive Learning without Prefabricated Data Augmentations  22
Bringing Your Own View: Graph Contrastive Learning without P...
收藏 引用
15th ACM International Conference on Web Search and Data Mining (WSDM)
作者: You, Yuning Chen, Tianlong Wang, Zhangyang Shen, Yang Texas A&M Univ College Stn TX 77843 USA Univ Texas Austin Austin TX 78712 USA
Self-supervision is recently surging at its new frontier of graph learning. It facilitates graph representations beneficial to downstream tasks;but its success could hinge on domain knowledge for handcraft or the ofte... 详细信息
来源: 评论
MoFlow: An Invertible Flow model for Generating Molecular graphs  20
MoFlow: An Invertible Flow Model for Generating Molecular Gr...
收藏 引用
26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
作者: Zang, Chengxi Wang, Fei Weill Cornell Med Dept Populat Hlth Sci New York NY 10021 USA
Generating molecular graphs with desired chemical properties driven by deep graph generative models provides a very promising way to accelerate drug discovery process. Such graph generative models usually consist of t... 详细信息
来源: 评论
TG-GAN: Continuous-time Temporal graph Deep generative models with Time-Validity Constraints  21
TG-GAN: Continuous-time Temporal Graph Deep Generative Model...
收藏 引用
30th World Wide Web Conference (WWW)
作者: Zhang, Liming Zhao, Liang Qin, Shan Pfoser, Dieter Ling, Chen George Mason Univ Fairfax VA 22030 USA Emory Univ Atlanta GA 30322 USA Beijing Univ Posts & Telecommun Beijing Peoples R China
Deep generative models of graph-structured data have become popular in very recent years. Although initial research has focused on static graphs in applications such as molecular design and social networks, many chall... 详细信息
来源: 评论
graphGen: A Scalable Approach to Domain-agnostic Labeled graph Generation  20
GraphGen: A Scalable Approach to Domain-agnostic Labeled Gra...
收藏 引用
29th World Wide Web Conference (WWW)
作者: Goyal, Nikhil Jain, Harsh Vardhan Ranu, Sayan Indian Inst Technol Delhi India
graph generative models have been extensively studied in the data mining literature. While traditional techniques are based on generating structures that adhere to a pre-decided distribution, recent techniques have sh... 详细信息
来源: 评论
GF-VAE: A Flow-based Variational Autoencoder for Molecule Generation  21
GF-VAE: A Flow-based Variational Autoencoder for Molecule Ge...
收藏 引用
30th ACM International Conference on Information and Knowledge Management (CIKM)
作者: Ma, Changsheng Zhang, Xiangliang King Abdullah Univ Sci & Technol Jeddah Saudi Arabia
Generating novel molecules with desired properties is a fundamental problem in modern drug discovery. This is a challenging problem because it requires the optimization of the given objectives while obeying the rules ... 详细信息
来源: 评论