咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...

主题

  • 2 篇 graph normalizin...
  • 1 篇 molecular graph ...
  • 1 篇 interpretability
  • 1 篇 regression
  • 1 篇 graph conditiona...
  • 1 篇 nonlinear embedd...
  • 1 篇 molecular graph ...
  • 1 篇 deep generative ...
  • 1 篇 graph generative...
  • 1 篇 de novo drug des...
  • 1 篇 pre-image proble...
  • 1 篇 classification

机构

  • 1 篇 weill cornell me...
  • 1 篇 univ rouen norma...

作者

  • 1 篇 zang chengxi
  • 1 篇 gauzere benoit
  • 1 篇 wang fei
  • 1 篇 gledel clement
  • 1 篇 honeine paul

语言

  • 2 篇 英文
检索条件"主题词=Graph Normalizing Flow"
2 条 记 录,以下是1-10 订阅
Pre-image free graph machine learning with normalizing flows
收藏 引用
PATTERN RECOGNITION LETTERS 2025年 190卷 45-51页
作者: Gledel, Clement Gauzere, Benoit Honeine, Paul Univ Rouen Normandie Normandie Univ Univ Le Havre Normandie INSA Rouen NormandieLITIS UR 4108 F-76000 Rouen France
Nonlinear embeddings are central in machine learning (ML). However, they often suffer from insufficient interpretability, due to the restricted access to the latent space. To improve interpretability, elements of the ... 详细信息
来源: 评论
Moflow: An Invertible flow Model for Generating Molecular graphs  20
MoFlow: An Invertible Flow Model for Generating Molecular Gr...
收藏 引用
26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
作者: Zang, Chengxi Wang, Fei Weill Cornell Med Dept Populat Hlth Sci New York NY 10021 USA
Generating molecular graphs with desired chemical properties driven by deep graph generative models provides a very promising way to accelerate drug discovery process. Such graph generative models usually consist of t... 详细信息
来源: 评论