咨询与建议

限定检索结果

文献类型

  • 518 篇 期刊文献
  • 317 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 843 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 797 篇 工学
    • 714 篇 计算机科学与技术...
    • 266 篇 电气工程
    • 79 篇 软件工程
    • 73 篇 信息与通信工程
    • 48 篇 控制科学与工程
    • 13 篇 仪器科学与技术
    • 13 篇 交通运输工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 8 篇 测绘科学与技术
    • 8 篇 安全科学与工程
    • 7 篇 生物工程
    • 7 篇 网络空间安全
    • 6 篇 材料科学与工程(可...
    • 6 篇 生物医学工程(可授...
    • 5 篇 土木工程
  • 104 篇 理学
    • 42 篇 生物学
    • 34 篇 数学
    • 20 篇 物理学
    • 9 篇 化学
    • 6 篇 地球物理学
    • 6 篇 系统科学
    • 6 篇 统计学(可授理学、...
    • 4 篇 地理学
  • 82 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 19 篇 图书情报与档案管...
  • 80 篇 医学
    • 49 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 10 篇 农学
  • 6 篇 法学
    • 4 篇 社会学
  • 3 篇 文学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 843 篇 graph representa...
  • 177 篇 graph neural net...
  • 103 篇 graph neural net...
  • 67 篇 self-supervised ...
  • 60 篇 contrastive lear...
  • 57 篇 task analysis
  • 53 篇 representation l...
  • 50 篇 deep learning
  • 38 篇 node classificat...
  • 34 篇 graph contrastiv...
  • 33 篇 feature extracti...
  • 31 篇 training
  • 28 篇 graph convolutio...
  • 28 篇 link prediction
  • 24 篇 graph classifica...
  • 24 篇 machine learning
  • 24 篇 graph embedding
  • 24 篇 unsupervised lea...
  • 20 篇 computational mo...
  • 19 篇 network embeddin...

机构

  • 12 篇 univ chinese aca...
  • 12 篇 alibaba grp peop...
  • 11 篇 tianjin univ col...
  • 11 篇 cent south univ ...
  • 10 篇 univ chinese aca...
  • 9 篇 chinese acad sci...
  • 8 篇 tsinghua univ de...
  • 8 篇 fuzhou univ coll...
  • 8 篇 univ chinese aca...
  • 8 篇 tsinghua univ pe...
  • 8 篇 beihang univ sch...
  • 7 篇 chinese univ hon...
  • 7 篇 northwestern pol...
  • 7 篇 univ illinois de...
  • 7 篇 shanghai jiao to...
  • 6 篇 chinese acad sci...
  • 6 篇 xidian univ sch ...
  • 5 篇 peking univ peop...
  • 5 篇 wuhan univ sch c...
  • 5 篇 nanjing univ sta...

作者

  • 11 篇 yu philip s.
  • 9 篇 peng hao
  • 8 篇 wu jia
  • 8 篇 mateos gonzalo
  • 7 篇 li jianxin
  • 7 篇 pan shirui
  • 7 篇 wang xin
  • 7 篇 sun qingyun
  • 6 篇 wang lei
  • 6 篇 shen huawei
  • 6 篇 larroca federico
  • 6 篇 cao feilong
  • 6 篇 tang jie
  • 6 篇 wang wei
  • 6 篇 fu xingcheng
  • 6 篇 wu lingfei
  • 6 篇 ye hailiang
  • 6 篇 xie cheng
  • 5 篇 dong yuxiao
  • 5 篇 pei jian

语言

  • 836 篇 英文
  • 5 篇 法文
  • 5 篇 其他
  • 4 篇 德文
  • 4 篇 意大利文
  • 2 篇 中文
检索条件"主题词=Graph Representation Learning"
843 条 记 录,以下是1-10 订阅
排序:
Distributed On-Demand Routing Algorithm With graph representation learning for Industrial IoT
收藏 引用
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2025年 第1期12卷 332-343页
作者: Dai, Bin Li, Hetao Huang, Wenrui Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan 430074 Peoples R China
Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing approaches offer promise but struggle with scalability an... 详细信息
来源: 评论
Heterogeneous graph representation learning via mutual information estimation for fraud detection
收藏 引用
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS 2025年 234卷
作者: Zhang, Zheng Su, Xiangyu Wu, Ji Tessone, Claudio J. Liao, Hao Nanyang Inst Technol Sch Comp & Software Nanyang 473004 Peoples R China Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Nanyang Educ Informatizat Engn Technol Res Ctr Nanyang 473004 Peoples R China Univ Zurich UZH Blockchain Ctr CH-8050 Zurich Switzerland Univ Zurich URPP Social Networks Zurich Switzerland
In the fraud detection, fraudsters frequently engage with numerous benign users to disguise their activities. Consequently, the fraud graph exhibits not only homogeneous connections between the fraudsters and the same... 详细信息
来源: 评论
GRL-ITransformer: An Intelligent Method for Multi-Wind-Turbine Wake Analysis Based on graph representation learning With Improved Transformer
收藏 引用
IEEE ACCESS 2025年 13卷 43572-43592页
作者: Han, Kang Xu, Li Shanghai Univ Elect Power Coll Math & Phys Shanghai 200090 Peoples R China
The importance of examining the wake effect of wind farms for optimizing their layout and augmenting their power generation efficiency is immense. Considering that the establishment of extensive wind farms often leads... 详细信息
来源: 评论
Multi-graph aggregated graph neural network for heterogeneous graph representation learning
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE learning AND CYBERNETICS 2025年 第2期16卷 803-818页
作者: Zhu, Shuailei Wang, Xiaofeng Lai, Shuaiming Chen, Yuntao Zhai, Wenchao Quan, Daying Qi, Yuanyuan Lv, Laishui China Jiliang Univ Sch Informat Engn Hangzhou 310018 Zhejiang Peoples R China
Heterogeneous graph neural networks have attracted considerable attention for their proficiency in handling intricate heterogeneous structures. However, most existing methods model semantic relationships in heterogene... 详细信息
来源: 评论
HeteroSample: Meta-Path Guided Sampling for Heterogeneous graph representation learning
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2025年 第4期12卷 4390-4402页
作者: Liu, Ao Chen, Jing Du, Ruiying Wu, Cong Feng, Yebo Li, Teng Ma, Jianfeng Wuhan Univ Sch Cyber Sci & Engn Key Lab Aerosp Informat Secur & Trusted Comp Minist Educ Wuhan 430072 Peoples R China Wuhan Univ Rizhao Inst Informat Technol Wuhan 430072 Peoples R China Wuhan Univ Collaborat Innovat Ctr Geospatial Technol Wuhan 430072 Peoples R China Nanyang Technol Univ Coll Comp & Data Sci Singapore 639798 Singapore Xidian Univ Sch Cyber Engn Xian 710071 Peoples R China
The rapid expansion of Internet of Things (IoT) has resulted in vast, heterogeneous graphs that capture complex interactions among devices, sensors, and systems. Efficient analysis of these graphs is critical for deri... 详细信息
来源: 评论
Commonsense knowledge enhanced event graph representation learning for script event prediction
收藏 引用
MACHINE learning 2025年 第3期114卷 1-19页
作者: Li, Xiang Jiang, Xinxi Zhou, Qifeng Xiamen Univ Sch Aerosp Engn Xiamen 361106 Fujian Peoples R China
Script event prediction plays an important role in many artificial intelligence applications. A key challenge in this task is accurately understanding the correlation between events and then inferring the subsequent e... 详细信息
来源: 评论
Domain Adaptation for graph representation learning: Challenges, Progress, and Prospects
收藏 引用
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 2025年 第2期40卷 283-300页
作者: Shi, Bo-Shen Wang, Yong-Qing Guo, Fang-Da Xu, Bing-Bing Shen, Hua-Wei Cheng, Xue-Qi Chinese Acad Sci Inst Comp Technol Key Lab AI Safety Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100190 Peoples R China
graph representation learning often faces knowledge scarcity in real-world applications, including limited labels and sparse relationships. Although a range of methods have been proposed to address these problems, suc... 详细信息
来源: 评论
GRELA: Exploiting graph representation learning in effective approximate query processing
收藏 引用
VLDB JOURNAL 2025年 第3期34卷 1-26页
作者: Li, Pengfei Zhang, Yong Wei, Wenqing Zhu, Rong Ding, Bolin Zhou, Jingren Hu, Shuxian Lu, Hua Roskilde Univ Roskilde Denmark Baidu Beijing Peoples R China USTC Hefei Peoples R China Alibaba Grp Hangzhou Peoples R China Aalborg Univ Copenhagen Denmark
Approximate query processing (AQP) plays a critical role in modern data analytics. Although machine learning models are used for AQP, existing methods fail to uncover implicit relationships among the underlying data, ... 详细信息
来源: 评论
Dual-channel graph-level anomaly detection method based on multi-graph representation learning
收藏 引用
APPLIED INTELLIGENCE 2025年 第6期55卷 1-16页
作者: Jing, Yongjun Wang, Hao Chen, Jiale Chen, Xu Hefei Univ Technol Dept Comp Sci & Informat Engn Hefei 230009 Anhui Peoples R China North Minzu Univ Sch Comp Sci & Engn Wenchang North St Yinchuan 750021 Ningxia Peoples R China
graph-level anomaly detection plays a crucial role in anomaly identification by comparing and classifying the graph-level features of normal and anomalous graphs. Despite advancements, existing methods often suffer fr... 详细信息
来源: 评论
An intelligent model selection method based on graph representation learning
收藏 引用
SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL 2025年 第4期101卷 493-505页
作者: Yang, Fan Ma, Ping Li, Wei Yang, Ming Harbin Inst Technol Control & Simulat Ctr POB 3006Sci Pk Harbin 150080 Peoples R China Natl Key Lab Complex Syst Modeling & Simulat Harbin Peoples R China
To select the most credible simulation model among multiple alternatives with dynamic and correlated outputs, an intelligent model selection method based on graph representation learning (GRL) is proposed, which treat... 详细信息
来源: 评论